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PrEFACE

Wouldn’t it be great to be able to have your own chips made that do exactly 
what you want them to? Well, field-programmable gate arrays (FPGAs) let you 
get pretty close to this ideal. Rather than being a chip specifically designed for 
you, an FPGA is a general-purpose chip that can be configured to act any way 
you want.

What is more, the way you configure your FPGA is either by drawing schemat-
ics or using a hardware-definition language that could (if your design is success-
ful) also be used to manufacture chips that are actually custom chips to your 
design. The language in question is called Verilog, and although this book shows 
you how to make designs using a schematic editor, the main focus is on learning 
the Verilog language.

The FPGA configuration can be changed as many times as you like, making it 
a great tool for prototyping your designs. If a problem rears its head, you can just 
reprogram the device until you get all the bugs out. The ultimate mind-bending 
flexibility comes when you realize that you could actually configure your FPGA to 
include a processor capable of running programs.

In this book you will learn both the general principals of using FPGAs and how 
to get the examples described in this book up and running on three of the most 
popular FPGA evaluation boards: the Mojo, the Papilio One, and the Elbert 2.

Although, logically, a microcontroller can do pretty much anything that a 
FPGA can, a FPGA generally will run faster, and some people find it easier to 
write a description of logic gates and hardware than they do a complex algorithm. 
You can use a FPGA to implement a microcontroller or other processor (and peo-
ple do). 

Perhaps the most compelling reasons to try out programming some Verilog on 
one of the many low-cost FPGA boards is simply to learn something new and have 
some fun!
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1

1
Logic

Field-programmable gate arrays (FPGAs) are digital devices that rely on 
digital logic. Computer hardware uses digital logic. Every calculation, every 
pixel rendered onto a screen, and every note of a music track is created using the 
building blocks of digital logic.

Although digital logic at times looks more like an abstract mathematical con-
cept rather than physical electronics, the logic gates and other components of 
digital logic are constructed from transistors etched onto integrated circuits (ICs). 
In the case of FPGAs, a circuit can be designed by drawing logic gates that are 
then mapped onto general-purpose gates on the FPGA that are connected 
together so as to implement your logic design. Alternatively, the logic can be 
described using the Verilog (or another) hardware description language.

You can still buy chips that contain a small number of logic gates, such as the 
7400, which has four two-input NAND gates. However, these are really only to 
maintain aged systems that use the chips or for educational use. 

Logic Gates
Logic gates have inputs and outputs. These digital inputs and outputs can be 
either high or low. A low digital input or output is indicated by a voltage close to  
0 V (ground). A high digital input is usually something over half the supply voltage 
of the logic, and a high digital output is at the positive supply voltage. The supply 
voltage for a FPGA is usually one of 1.8, 3.3, or 5 V, and most FPGAs can operate 
over a range of voltages. Some allow multiple logic voltages to be used on one 
device. 
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2  Programming FPGAs: Getting Started with Verilog

Describing logic gates can be tricky because the names of the logic gates (not, 
and, or, etc.) also mean something in English too. To avoid any confusion, I have 
capitalized the gate names.

The NOT Gate
The simplest logic gate is the NOT gate (sometimes called an inverter). It has a 
single input and a single output. If the input is high, the output will be low, and 
vice versa. Figure 1-1 shows the schematic symbol for a NOT gate. The truth table 
lists every possible combination of input and the resulting output. By convention, 
inputs tend to start at the beginning of the alphabet with names such as A, B, and 
C. Outputs are quite often called Q or letters near the end of the alphabet such as 
X, Y, and Z.

Input Output

Figure 1-1 A NOT gate.

To describe how logic gates or groups of logic gates behave, you can use some-
thing called a truth table. This specifies the output that the logic will provide for 
every possible combination of inputs or outputs. For a NOT gate, this is shown 
in Table 1-1. The letters H and L or the numbers 1 and 0 are used in place of high 
and low.

Input Output

L H

H L

Table 1-1 Truth Table for a NOT Gate

 If you were to connect the output of one NOT gate to a second NOT gate, as 
shown in Figure 1-2, the output of the combination would always be the same as 
the input. 

Input Output

Figure 1-2 Two NOT gates.
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 Chapter 1: Logic 3

The AND Gate
As its name suggests, the output of an AND gate will be high only if all its inputs 
are high. Figure 1-3 shows the symbol for a two-input AND gate, and Table 1-2 is 
the truth table for the AND gate. 

A

B
Q

Figure 1-3 An AND gate.

Input A Input B Output Q

L L L

L H L

H L L

H H H

Table 1-2 Truth Table for an AND Gate

The OR Gate
The OR gate also behaves as its English-language name would suggest. The out-
put of an OR gate will be high if any of its inputs are high. Figure 1-4 shows the 
symbol for a two-input OR gate, and Table 1-3 is the truth table for the OR gate. 

A

B
Q

Figure 1-4 An OR gate.

Input A Input B Output Q

L L L

L H H

H L H

H H H

Table 1-3 Truth Table for an OR Gate
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4  Programming FPGAs: Getting Started with Verilog

NAND and NOR Gates
The little circle on the output of the NOT gate in Figure 1-1 is what indicates the 
inverting function of the gate. A NAND gate (NOT AND) is an AND gate with an 
inverted output, and a NOR gate is an OR gate with an inverted output. Figure 1-5 
shows the symbols for the two gates, and Tables 1-4 and 1-5 are the truth tables 
for the two gates.

A

B

Q A

B

Q

NAND NOR
Figure 1-5 NAND and NOR gates.

Input A Input B Output Q

L L H

L H H

H L H

H H L

Table 1-4 Truth Table for a NAND Gate

Input A Input B Output Q

L L H

L H L

H L L

H H L

Table 1-5 Truth Table for a NOR Gate

Both NAND and NOR gates are described as universal gates because either of 
them can be used to make any other type of gate by inverting either the inputs to 
the gate or the outputs from the gate. What’s more, you can use either a NAND or 
an OR gate to make a NOT gate simply by tying together the two inputs. For 
example, Figure 1-6 shows how you can make an AND gate using three NOR 
gates.
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A

B

Q

Figure 1-6 Making an AND gate using NOR gates.

De Morgan’s law
The design of Figure 1-6 makes use of a law of logic called De Morgan’s 
law. This is best explained as follows: inverting the result of two inputs 
“anded” together gives the same result as inverting both the inputs and 
“oring” them together. In Figure 1-6, what we actually have is both the 
inputs being inverted by a NOT gate (NOR gate with inputs tied together) 
“ored” together, and then the output of the OR gate is itself inverted, 
giving the overall result of “anding” all the inputs. This is a useful trick to 
know.

You can check how this works by examining the truth table in Table 1-6, which 
includes the intermediate states of A and B, the result of inverting A and B, respec-
tively.

Input A Input B NOT A NOT B Output Q

L L H H L

L H H L L

H L L H L

H H L L H

Table 1-6 Truth Table for Making an AND Gate from NOR Gates

XOR Gates
The OR gate discussed earlier is an inclusive or; that is, A or B can be high or 
both can be high for the output to be high. When we say or in English, we tend 
to mean the exclusive version of or. Do you want cream or ice cream with your 
dessert—the implication being that the attractive option of having both is not 
allowed. This type of OR in a logic gate is called an exclusive OR, shortened to 
XOR, and is very useful because it allows inputs to be compared. The output of 
an XOR will be high as long as the inputs are the same, irrespective of whether 
the inputs are high or low.
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6  Programming FPGAs: Getting Started with Verilog

Figure 1-7 shows how you can make an XOR gate using four NAND gates. 
Because XOR gates are used quite commonly, the symbol for an XOR gate is 
shown alongside the NAND gate version. Table 1-7 shows the truth table for an 
XOR gate.

A

B

QA
B

Q

Figure 1-7 Making an XOR gate from four NAND gates.

Input A Input B Output Q

L L L

L H H

H L H

H H L

Table 1-7 Truth Table for an XOR Gate

Binary
If instead of thinking of the inputs and outputs to logic gates as being voltages of 
high or low, we can think of them as numbers (1 for high and 0 for low), and then 
we can start to get an inkling of how a computer could make use of logic gates to 
manipulate numbers. However, a range of numbers of just 0 and 1 is not going to 
be that useful. 

We use number base 10; that is, we use 10 symbols to represent our numbers 0, 
1, 2, 3, 4, 5, 6, 7, 8, and 9. This is done probably because of our having 10 fingers. 
When we need to represent a number larger than 9, we have to use two sym-
bols—10, 45, 99, and so on. The right-most digit (called the least significant digit) 
is the number of units, the next digit to the left is the number of tens, the next the 
number of hundreds, and so on.

If we had decided to use the number of noses we have to count with rather than 
the number of fingers, then we would use number base 2. You either have 0 or 1. 
If you want to represent a number bigger than 1, then you must have more than 
one digit. Number base 2 is also called binary, and one binary digit is called a bit. 
Generally, to do something useful, we need a few bits grouped together, just like 
we need a group of decimal digits for larger numbers.
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Table 1-8 shows how the numbers 0 to 7 are represented using 3 bits. Note that 
when displaying binary numbers, you usually include the leading zeros.

Decimal Number Binary Number

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

Table 1-8 The Numbers 0 to 7 in Binary and Decimal

If you break down a decimal number, say, 123, you could write that as 1 × 100 
+ 2 × 10 + 3. You can use this approach if you want to know the decimal represen-
tation for a number written in binary. For example, 111 in binary is 1 × 4 + 1 × 2 + 
1 = 7 in decimal. If you pick a bigger binary number to convert to decimal, say, 
100110, the decimal value is 1 × 32 + 0 × 16 + 0 × 8 + 1 × 4 + 1 × 2 + 0 = 38.

A byte is 8 bits, and with a byte, the decimal equivalents of the digit positions 
are 128, 64, 32, 16, 8, 4, 2, and 1. If you add all those together, this means that you 
can represent any decimal number between 0 and 255. Each time you add another 
bit, you double the number range that you can represent. The numbers get big 
pretty quickly. A modern computer will do arithmetic on 64 bits at a time, giving 
a range of numbers from 0 to nearly 18,000,000,000,000,000,000. 

Adding with Logic
Logic gates allow you to do arithmetic on binary numbers. Because binary  
numbers are just numbers represented in bits, you can do arithmetic on any num-
bers using logic gates. Figure 1-8 shows how you can make a binary adder using 
logic gates.

Table 1-9 shows the truth table for the single-bit adder. This time, however, 
there are two outputs: the sum and the carry bit, which will be 1 when the result 
of the addition is too big to hold in 1 bit.

01_Ch01.indd   7 8/27/16   9:30 AM
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AND

XOR
A
B

A + B 

Carry Out
Figure 1-8 A single-bit adder.

Input A Input B Output Sum (A + B) Output Carry-Out

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Table 1-9 Truth Table for a Single-Bit Adder

Looking at the table, you can see that if A and B are both 0, then the sum is 0. 
If one of them is 1, then the sum will be 1. However, if both A and B are 1, then the 
sum digit itself will be 0, but we will want to carry a 1 to the next number position. 
In binary, 1 + 1 is 0 carry 1 (or decimal 2).

This does mean that if we want to add more than 1 bit at a time, the next adding 
stage will have three inputs (A, B, and carry-in). This is a bit more complicated to 
accomplish because we have to add together three digits rather than two. Figure 
1-9 shows an adder stage that takes a carry-in digit.

AND

OR

XOR

XOR

AND

A
B

Carry In

A + B 

Carry Out

Figure 1-9 A single-bit adder with a carry-in bit.
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 Chapter 1: Logic 9

You will never need to create an adder like this from multiple gates because 
adders are available as single components that you can use in your designs. 
However, it is interesting to see how they can be constructed from basic gates.

If we had eight of these stages, we could use them to add 2 bytes together. Every 
computer’s central processing unit (CPU) will have a hardware adder made up of 
logic gates in a very similar way to this. A 32-bit processor will be able to process 
32-bit numbers in one go, and a 64-bit machine will have 64 stages like Figure 1-9 
to add 64 bits at a time.

Flip-Flops
In the preceding examples, the gates are arranged so that you will always get the 
same outputs for a given set of input values. If you start feeding back the outputs 
of logic gates to an earlier gate that affects the first gate’s inputs, then you can give 
your network of logic gates the ability to remember things. This kind of logic is 
called sequential logic.

One of the fun things about electronics is that it is a relatively modern field, 
and its pioneers could ditch the Latin pomposity of earlier naming conventions 
and call things that flip and flop from one state to another a flip-flop. For those 
with a yearning to call them something less interesting, you may also refer to them 
as bistables.

Set-Reset Flip-Flop
Take a look at the schematic of Figure 1-10. This is called a set-reset (SR) flip-flop. 
Having introduced the idea that high means 1 and low means 0, let’s stick to num-
bers for logic values. Imagine that initially S (set) is 1 and R (reset) is 0. Because 
one input (S) to NOR gate A is 1, then it doesn’t matter about the other input to 
NOR gate A, the output will be 0. This 0 output from NOR gate A means that the 
top input to NOR gate B will also be 0. The other input to NOR gate B (R) is also 
0, so the output of NOR gate B will be 1, making the lower input to NOR gate A 
also 1. Next, imagine that you now set S to 0. This will have no effect on the output 
of NOR gate A.

Having set the output Q to 1 by setting S to 1, Q will not change whatever we 
do with S: it will change only if R is set to 1, making the output of NOR gate B (Q) 
0. The output of NOR gate A is labeled as Q with a line over it. The line (called a 
bar) indicates that the output is inverted, and Q– will always be the inverse of Q.
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10  Programming FPGAs: Getting Started with Verilog

S

R

Q

Q

H

L H

L
A

B

Figure 1-10 A set-reset flip-flop.

The SR flip-flop just described is used occasionally, but perhaps the most com-
monly used and flexible type of flip-flop is the D flip-flop. This can be made from 
a load of NAND or NOR gates, but you only ever need to use it as a logical block 
in its own right. Figure 1-11 shows the schematic symbol for a D flip-flop.

D Q

Q

S

R
CK

Figure 1-11 A D flip-flop.

The D flip-flop still has the S, R, Q, and Q–, but it has two extra pins D and CK 
(clock). The clock symbol is often shown as a little triangular notch. You can still 
use S and R to set and reset the flip-flop, but you are more likely to use D and CK.

The concept of a clock is something that is essential to digital electronics. It 
synchronizes the system so that the slight delays caused by logic gates changing 
from high to low and propagated through multiple paths between each other do 
not cause glitches if the outputs haven’t finished settling. A clock generally will be 
connected to a signal that flips back and forth between high and low. FPGAs have 
a built-in clock signal that you will use in most of the examples in this book. This 
signal is 12 to 50 MHz depending on which of this book’s example FPGA boards 
you are using. This is 12 to 50 million cycles of high/low per second.

When the clock signal goes high, whatever value of D (0 or 1) will be latched 
into the output Q. This may not sound very exciting, but it does allow you to 
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construct the much-used shift registers and counters described in the following 
sections.

Shift Registers
Figure 1-12 shows four D flip-flops arranged with the Q output of one D flip-flop 
connected to the D input of the next. All the clocks for the D flip-flops are con-
nected together. This arrangement is called a serial-to-parallel shift register.

D Q

Clock

D Q D Q D Q
Data

QA QB QC QD

Figure 1-12 A 4-bit serial-to-parallel shift register using D flip-flops.

Imagine that clock and D are both connected to push switches, and QA to QD 
are all connected to light-emitting diodes (LEDs) that light when they are high. 
Hold down the D switch (to make it high), and then, when you briefly press the 
clock switch, the high of D will become latched into the first flip-flop. Release the 
D switch (to make it low), and when you momentarily press clock again, two 
things will happen simultaneously:

1. The value that was at QA (high) will be latched into the second flip-flop 
and will make QB high.

2. The current value of D (low) will be latched into the first flip-flop and 
will make QA low.

Each time you pulse clock high, the bit pattern will shuffle to the right along the 
flip-flops. Note that it is the transition of the clock from 0 to 1 that triggers the bits 
to shuffle to the right. You could, of course, add as many D flip-flops as you like.
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12  Programming FPGAs: Getting Started with Verilog

Binary Counters
D flip-flops are very flexible components. Arranged with the inverted output Q–   
from one flip-flop connected to the clock input of the next flip-flop (Figure 1-13), 
the flip-flops can be arranged to count in binary.

D

Q
Clock

QA QB

Q D

Q

Q

QC

D

Q

Q

QD

D

Q

Q

Figure 1-13 Using D flip-flops as a counter divider. 

Each time that the clock signal is pulsed, flip-flop A toggles its state between 0 
(low) and 1 (high). The output of the flip-flop then provides pulses at half the 
frequency to the next stage, and so on. This is why counters are also called fre-
quency dividers. Thus, if the frequency at the clock is 24 MHz, the frequency at 
QA will be 12 MHz and so on down the line, halving each time. 

Digital watches and clocks usually operate at a clock frequency of 32.768 kHz. 
This number is chosen because if divided by two 15 times, it results in a frequency 
of 1 Hz (1 pulse per second). In Chapters 3 and 4 you will implement this example 
of a counter on your FPGA board, first by drawing it as a schematic rather like 
Figure 1-13 and then by writing a few lines of Verilog code.

Summary
This chapter provides only a taste of the wide and complex field that is digital elec-
tronics. As the book progresses, you will meet other types of digital components. 

Although it is important to understand the basics of digital electronics when 
using an FPGA, use of a language such as Verilog means that you can create com-
plex designs without the need to understand exactly what is being created for you 
at gate level by the software. In Chapter 2, you will get to learn exactly what an 
FPGA is and meet the FPGA prototyping boards used in this book, the Elbert V2 
and the Mojo and Papilio boards.
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2
FPGAs

Now that you have looked at the basic building blocks of digital electronics, 
it’s time to take a look at FPGAs to see exactly what they do and meet the Elbert 
2, Mojo, and Papilio evaluation boards that we can then configure to act as a 
complex digital system.

How an FPGA Works
An FPGA is made up of general-purpose logic cells (that have 64 inputs and one 
output). When the FPGA is being configured, these general-purpose logic cells 
are connected together using yet more logic gates, and finally, some of the outputs 
can be connected to special general-purpose input-output (GPIO) cells that allow 
them to be used as digital inputs or outputs via the physical pins on the FPGA 
chip’s package. If the evaluation board you are using has built-in LEDs and 
switches, then these will be permanently connected to certain GPIO logic cells of 
the FPGA.

The logic blocks that make up an FPGA use a lookup table (LUT). The lookup 
table will have a number of inputs, say, six inputs and a single output. Imagine it 
as a truth table with six inputs (64 combinations). The table can be configured to 
specify an output value (0 or 1) for every possible combination of the six inputs to 
the gate. The contents of these LUTs, combined with other routing information, 
are what give the FPGA its logic.

The LUT will often be combined with extra components such as a flip-flop to 
make an individual logic block. Figure 2-1 shows a logical view of how all this is 
arranged.
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14  Programming FPGAs: Getting Started with Verilog

Figure 2-1 Logical structure of an FPGA.

GPIO pins on the FPGA chip are connected to special-purpose input-output 
(IO) blocks that provide buffered microcontroller-like inputs and outputs that 
typically can source or sink a few tens of milliamperes.

The vast bulk of the functional units in the FPGA will be logic blocks, and a 
typical modern FPGA may have from 200,000 to several million of these blocks. 
There also may be a fixed random access memory (RAM) block for use when the 
FPGA is to be configured as a processor or just needs to store a lot of data such as 
in the WAV sound file player example of Chapter 8. Taking this idea of some 
special-purpose areas of the FPGA to its extreme, you find high-end systems-on-
a-chip (SoC) FPGAs that include fixed high-performance processor cores and 
memory on a chip that also includes configurable logic cells. FPGAs are also often 
used to prototype an application-specific IC (ASIC) for very large production 
runs.

Routing between such vast numbers of logic blocks is pretty tricky, but fortu-
nately for us, we don’t have to do it—that’s what the design software is for.

The information in the LUTs and the routing matrix (that defines the intercon-
nections) is volatile. When you lose power, all that information disappears, and 
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the FPGA reverts to its original state. To configure the FPGA, the configuration is 
usually stored outside the FPGA in electrically erasable programmable read-only 
memory (EEPROM) or Flash memory (which is not lost when the power is 
removed). The FPGA generally will have a fixed-hardware loading interface built 
into it that will pull in the configuration as the FPGA starts up. This typically takes 
less than 1/5 of a second.

The Elbert 2
Figure 2-2 shows the Elbert 2 board. This board is an FPGA evaluation board. Its 
sole purpose is to allow you to experiment with FPGAs and learn how to use them 
without having to spend a load of time soldering or designing peripheral electron-
ics to connect to it because it’s all already there.

These boards are available directly from Numato Laboratories (http://numato 
.com) or from Amazon.com and various other sources. The price of the entire 
board was just $29.95 at the time of this writing. Because the Elbert 2 has a selec-
tion of built-in buttons and LEDs, the only other thing you will need is a 

Figure 2-2 The Elbert 2–Spartan 3A FPGA development board.
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16  Programming FPGAs: Getting Started with Verilog

USB-to-mini-USB lead. All the example boards used in this book are quite happy 
being powered from the USB port.

The board has the following features:

•	 Spartan XC3S50A FPGA in TQG144 package (1584 logic cells, 54 kbits of 
RAM)

•	 16-MB SPI Flash memory for configuration

•	 USB 2.0 interface for onboard Flash programming

•	 8 LEDs

•	 6 push buttons

•	 Eight-way dual in-line package (DIP) switch

•	 VGA connector

•	 Stereo jack

•	 Micro secure digital (SD) card adapter

•	 3 seven-segment LED displays

•	 39 IOs for you to use

•	 Onboard voltage regulators

The Mojo
The Mojo (Figure 2-3) is another popular FPGA evaluation board. It’s a much 
more elegant and compact board than the Elbert 2. While it does have a row of 
built-in LEDs, to really experiment, you should also get a Mojo IO Shield. This 
adds a four-digit LED display and a whole load of push and slide switches. The 
Mojo uses a faster and more powerful FPGA chip than the Elbert.

The Mojo has the following features:

•	 Spartan 6 XC6SLX9 FPGA (9152 logic cells, 576 kbits of RAM)

•	 84 digital IO pins

•	 8 analog inputs

•	 8 general-purpose LEDs

•	 Reset button

•	 LED to show when the FPGA is correctly configured 
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Figure 2-3 The Mojo board (top) and with IO Shield attached (bottom).
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18  Programming FPGAs: Getting Started with Verilog

•	 Onboard voltage regulation supply voltage 4.8 to 12 V or USB

•	 A microcontroller (ATMega32U4) used for configuring the FPGA, USB 
communications, and reading the analog pins

•	 Arduino-compatible bootloader allowing you to easily program the 
microcontroller as well as the FPGA

•	 Onboard Flash memory to store the FPGA configuration file

The Mojo IO Shield adds the following features to the Mojo:

•	 24 LEDs 

•	 24 slide switches

•	 5 push buttons

•	 4 seven-segment LED displays

The Papilio
The Papilio One (Figure 2-4) does not itself have any built-in LEDs or switches. 
Like the Mojo, to experiment with it, it is designed to accept an interface board 
that just plugs onto the top of it. The one chosen for this book is the LogicStart 
MegaWing.

The Papilio One is available in 250- and 500-k models. The number refers to 
the FPGA part number of XC3S250E or XC3S500E. The other specifications of 
the Papilio One 500k are

•	 Xilinx Spartan 3E (10,476 logic cells, 74 kbits of RAM)

•	 4 Mbits of SPI Flash memory

•	 USB connection

•	 4 independent power rails at 5, 3.3, 2.5, and 1.2 V

•	 Power supplied by a power connector or USB

•	 Input voltage (recommended) of 6.5 to 15 V

•	 48 I/O lines

The LogicStart MegaWing has the following features:

•	 7-segment display, 4-character

•	 VGA port
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Figure 2-4 The Papilio One board (top) with LogicStart MegaWing (bottom).
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20  Programming FPGAs: Getting Started with Verilog

•	 Mono audio jack, ⅛ inch 

•	 Micro joystick, five directions

•	 8 analog inputs (SPI ADC, 12-bit, 1 Msps)

•	 8 LEDs

•	 8 slide switches, user input

Software Setup
All three evaluation boards use FPGAs from the manufacturer Xilinx, so they can 
all be programmed using the same Integrated Synthesis Environment (ISE) soft-
ware. This will take you as far as generating a .bit file that then has to be trans-
ferred onto your evaluation board using a software utility specific to that board. 
This is pretty much a matter of choosing the file, selecting the serial port to which 
the board is connected, and then pressing Go.

Installing ISE
The design tools of the FPGA manufacturers are frankly bloated monsters. The 
ISE design tool is a 7-GB (that’s right, gigabyte!) download. In many ways, getting 
and installing the design tool constitute the most time-consuming part of getting 
started with FPGAs. 

The first step in obtaining ISE is to visit Xilinx.com with your web browser and 
find the ISE download page, which you will find by following the links: Developer 
Zone  ISE Design Suite  Downloads. Scroll down the “Downloads” area to 
ISE Design Suite (we used version 14.7), and select the option “Full Installer for 
Windows.” Do not be tempted to download the newer Vivado Design Suite. This 
is only for newer Xilinx FPGAs and does not support the Spartan 3s used on the 
Elbert 2 and Papilio One.

There are Windows and Linux versions of the tool. In this book, we will just 
describe the process of getting up and running in Windows.

When you click on the “Download” button, a survey will appear that you have 
to complete, followed by a second registration form. Persevere and eventually the 
download will start, and you can go and do something else for a few hours while 
the download completes.

The downloaded file has a .tar extension that is not a normal Windows file 
format, so you will need to extract the contents of the tar file using a utility such 
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as 7-zip (7-zip.org). With 7-zip installed, right-click on the .tar file, and select the 
option “Extract.” Once the file is extracted, you will see a folder called something 
like Xlinx_ISE_OS_Win_14.7_1015_1. Inside this folder you will find the program 
xsetup.exe. Run xsetup.exe to install ISE. When you get to the window shown in 
Figure 2-5, select the option “Web Pack.”

The main installer will start several subinstallers for other packages and ask 
you to agree to several license agreements. You can accept all the defaults offered 
to you for the remainder of the installation.

At the end of the installation process, select the option “Get Free Vivado/ISE 
WebPack License.” You’ll have to log in again and check a short form and then 
select “Vivado Design Suite: HL Web Pack …” from the list of licenses available to 
you (Figure 2-6). Click on the button “Generate Node-Locked License.” This will 
be e-mailed to you as an attachment called xilinx.lic; save the file, and then add the 
license from the License Configuration Manager that should still be open. If the 
License Configuration Manager is not open, you can open it from the “Manage 

Figure 2-5 Installing ISE Web Pack.
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License” option on the Help menu of Xilinx Platform Studio. The installation pro-
cess will add a new shortcut on your desktop called “ISE Design Suit 14.7.”

Installing Elbert Software
The Elbert board has a software utility for programming the board. This handles 
just the final step of copying the binary file generated by ISE onto the Elbert V2’s 
Flash memory. There is also a USB driver to install for Windows users.

To set up your computer to use the Elbert, visit the product page for the Elbert 
V2 at numato.com (http://numato.com/elbert-v2-spartan-3a-fpga-development 
-board/), and click on the Downloads tab. You will need to download

•	 Configuration tool (used to program the board)

•	 Numato Lab USB CDC driver

•	 User manual

Figure 2-6 Choosing an ISE license.
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To install the USB driver on Windows, plug the Elbert V2 board into your com-
puter, and the New Hardware Wizard should start. Point the wizard at the 
extracted “numatocdcdriver” folder, and the driver should install, and the new 
hardware should be recognized.

After this, the Elbert V2 will be connected to one of the virtual COM ports of 
your PC. To find out which port, open the Windows Device Manager, and you 
should find it listed in the Ports section, as shown in Figure 2-7.

Installing Mojo Software
The Mojo board also has some software that you need to install. Visit https://
embeddedmicro.com/tutorials/mojo-software-and-updates/installing-mojo-
loader to download the Mojo loader for your computer’s architecture and operat-
ing system.

Note that the Mojo board also has support for the Arduino IDE because the 
board also includes an ATMega microcontroller (as found in the popular Arduino 

Figure 2-7 Finding the COM port connected to the Elbert.
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microcontroller boards). In this book, you will not be programming this micro-
controller or using the Arduino IDE to upload images to the board, so you will 
need the Mojo loader to upload onto the Mojo board.

Installing the driver for the Mojo is very similar to installing the driver for the 
Elbert 2. From the Found New Hardware driver, locate the driver from the instal-
lation folder for the Mojo Loader (/mojo loader/driver).

Installing Papilio Software
You will find the loader for the Papillio at http://forum.gadgetfactory.net/index 
.php?/files/file/10-papilio-loader-gui/. The installer will automatically install the 
USB drivers for the Papillio and the loader. When you plug the board in, it will 
show up as FTDI Dual RS232. 

Project Files
The files for all the projects in this book are contained in a GitHub repository at 
https://github.com/simonmonk/prog_fpgas. If you are already familiar with using 
git, then you can clone the code onto your own machine. If you are new to GitHub, 
then the easiest way to get the files onto your computer without having to install 
git is to navigate to the webpage in the preceding paragraph and then click on the 
“Download Zip File” button on the bottom right (Figure 2-8).

Figure 2-8 Downloading a Zip archive of the project files.
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Unzip the files to a convenient location (say your desktop). The result will be a 
folder called prog_fpgas-master that itself contains several folders and files, 
including folders called elbert2, mojo, and papilio. Each of these folders for the 
three example boards contains project folders for all the project code for that par-
ticular board. Each project is prefaced by the number of the chapter in which it 
appears. 

Much of the Verilog code is identical across the three boards, except where 
there are differences in the hardware (e.g., three-digit LED display digits rather 
than four in the case of the Elbert 2 or where differing clock frequencies of the 
boards have an effect).

Each project folder contains a file with the extension .xise. This is the project 
file, and double-clicking on it will start ISE on that project. The .bit file is a ready-
made file for installation directly onto your FPGA board using the loader software 
for whichever board you have. Finally, the “src” folder contains the actual Verilog 
or schematic files for the project if you want to synthesize the design yourself to 
rebuild the .bit file.

The project folders start out pretty empty, but as soon as you open a project, 
you will find that ISE will add some files. When you actually synthesize a design 
and generate the .bit file, ISE will create even more files.

Summary
In this chapter, you have learned something about FPGAs and will now have your 
computer set up and ready to start some FPGA programming. Although this book 
is primarily about programming FPGAs using Verilog, before jumping into 
Verilog, Chapter 3 shows you how to program your FPGA board by drawing logic 
diagrams using gates and flip-flops.
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3
Drawing Logic

The ISE design tool gives you two ways of programming your FPGA. One is to 
draw a familiar logic diagram, and the second is to use a hardware description 
language (HDL) such as Verilog. We will start with the schematic approach, 
although seasoned FPGA designers nearly always use Verilog or its rival VHSIC 
Hardware Description Language (VHDL).

Even if you don’t plan to draw your schematics and just want to use Verilog, 
you should still work through this chapter because it explains how to use the ISE 
development tool as well as introducing concepts such as user constraints files 
that are common to Verilog and schematic design.

In this chapter, we will go into quite a lot of detail on using the ISE tool to get 
you up and running with what can be a quite daunting tool. You do not need to 
have your board connected to your computer until you have finished your design 
and are ready to program your FPGA.

A Data Selector Example
The first example that we will make is a data selector (Figure 3-1). The steps 
involved in this are mostly the same whichever FPGA board you are using. We 
will highlight where you need to do something different for your board.

This design has inputs A and B and an output Q. The output Q will either have 
the value of A or the value of B depending on SEL (select), which switches the 
output between the two inputs A and B. Table 3-1 shows the truth table for the 
selector. Note that the NOT gates are labeled INV (for inverter). This is another 
name for a NOT gate. An X in a truth table indicates that it does not matter 
whether that input is high or low; the output will not be affected by it.
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Figure 3-1 A simple data selector.

Input A Input B Input SEL Output Q

L X L L

H X L H

X L H L

X H H H

Table 3-1 Truth Table for an AND Gate

The three inputs (A, B, and SEL) for this circuit will be hooked up to three of 
the push buttons on your FPGA board, and the output will be connected to one of 
the LEDs so that you can actually see the circuit in use.

You can either download the project files from GitHub, as described in Chapter 
2, or follow the instructions below to create the projects from scratch. The data 
selector project is in folder ch03_data_selector.

Step 1: Create a New Project
The first step is to fire up ISE and then select File  New Project from the menu. 
This will open the New Project Wizard shown in Figure 3-2.

Enter “data_selector” in the Name field. In the Location field, navigate to the 
folder where you want to keep your ISE designs. The Working Directory field will 
automatically update to match this directory, so you don’t need to change the 
Working Directory field.

Change the “Top-Level Source Type” drop-down to “Schematic,” and then click 
“Next.”

This will take you to the Project Settings shown in Figure 3-3.
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Figure 3-2 The New Project Wizard in ISE.

Figure 3-3 The New Project Wizard—Project Settings (Mojo).
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The settings here will depend on which board you are using. Figure 3-3 shows 
the settings for the Mojo board. 

Use Table 3-2 to make the settings, and then click “Next” again. You can find 
out more about these settings and other things specific to FPGA boards in 
Appendices B, C, and D.

Setting Elbert 2 Mojo Papilio One

Evaluation  
development board

None specified None specified None specified

Product category All All All

Family Spartan3A and  
Spartan3AN

Spartan6 Spartan3E

Device XC3S50A XC6SLX9 XC3S250E or 
XC3S500 (see note)

Package TQ144 TQG144 VQ100

Speed –4 –2 –4

Note: If you have a Papilio One 250k, use XC3S250E; for a Papilio One 500k, use XC3S500.

Table 3-2 FPGA Board New Project Settings

The Wizard will then show you a summary of the new project, and you can 
then click “Finish.” This will create the new but empty project shown in Figure 3-4.

The screen is divided into four main areas. On the top left, you have the Project 
View. This is where you can find the various files that make up the project. It is 
organized as a tree structure. Initially, there are two entries in this area. There is the 
entry that says “data_selector,” and the second entry that has an automatically gen-
erated name (xc6slx9-2tqg144) based on the device type and package. The latter 
will eventually contain two files, the schematic drawing that we are about to create 
and an “implementation constraints” file that defines how the inputs and outputs 
in the schematic connect to the actual switches and LEDs on the FPGA board. 

You can also double-click on “xc6slx9-2tqg144” (or whatever it’s called in your 
project) to open the project properties. Thus, if you made a mistake setting the 
project properties using the New Project Wizard, you can always correct it by 
double-clicking on this.

To the left, beneath the Project View, is the Design View. This will eventually 
list useful actions that you can apply to your design, including generating the 
binary file for deployment on your FPGA board.
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Figure 3-4 A new project.

The wide area at the bottom of the window is the Console. This is where error 
messages, warnings, and other information will appear.

The large area to the right of the window is the Editor area. When it comes to 
drawing the schematic, this is where you will do it.

Step 2: Create a New Schematic Source
To create a new schematic, right-click on “data_selector” in the Project View, and 
select the option “New Source….” This will open the New Source Wizard (Figure 
3-5).

Select Source Type “Schematic,” and enter “data_selector” in the File Name 
field. Then click on the three dots next to the Location field. To keep things tidy, 
create a new folder inside the default directory for the project called “src” (source), 
and then click “Next.” A summary screen will appear, to which you can respond by 
clicking “Finish.” This will result in a blank canvas being prepared for you in which 
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you can draw the schematic. This is shown in Figure 3-6 with the parts that you 
are going to need to use labeled.

The icon menu bar running vertically to the left of the Editor area controls the 
mode of the window and also what appears on the left-hand side of the window:

•	 The top icon (an arrow) puts the window into select mode. You will need to 
click on this before you can drag circuit symbols around or change their 
properties.

•	 Click on the “Add Wire” mode when you are connecting the gates and 
other circuit symbols together.

•	 IO markers are used to indicate the boundary between the schematic you 
are designing and the actual pins of the FPGA IC. This mode lets you add 
these symbols.

•	 Add logic symbols. This is the mode selected in Figure 3-6. The left-hand 
panel then divides into a top half that shows categories of circuit symbols 
and a bottom half that has a list of the component symbols in that category.

Figure 3-5 The New Source Wizard.
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Figure 3-6 The Schematic Editor.

Step 3: Add the Logic Symbols
Put the screen into the Add Logic Symbols mode by clicking on the “Add Symbols” 
icon (see Figure 3-6). You are going to need to add two two-input AND gates, a 
two-input OR gate, and two NOT gates (inverters).

Click on the category “Logic”, then select “and2” (two-input AND). Then click 
twice in the Editor area to drop the two AND gates. Then select “or2” and drop an 
OR gate in roughly the right location to the right of the AND gates. Finally, add in 
the two NOT gates (“inv” for inverter) below and to the left of the AND gates. 
Zoom in a bit (toolbar at the top of the window), and the Editor area should look 
something like Figure 3-7.

Step 4: Connect the Gates
Click on the “Add Wire” icon, and then connect the gates together in the arrange-
ment shown in Figure 3-1. To make a connection, click on one of the square con-
nection points, and drag it out to the connection point or line to which you want 
to connect. The software will automatically put bends in the line for you. If you 
need to do more things to tidy the diagram up, you can change to Select mode and 
drag the symbols and wires around. The end result should be Figure 3-8.
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Figure 3-7 The logic gates in position.

Figure 3-8 Connecting the symbols with wires.
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Step 5: Add the IO Markers
Click on the “Add IO Markers” icon, and then add markers to all the inputs and 
the output by dragging the mouse out from the wire in question. Notice how the 
software figures out that the output is an output.

Initially, the connections are all given names like “XLXN_1” and so on. To 
change these names to something more meaningful, change to Select mode, right-
click on an IO connector, and chose the menu option “Rename Port.” Change the 
port names so that they agree with Figure 3-9.

Notice that we have called the output Q. Be careful when naming outputs 
because the word OUT is reserved for use by ISE, so you cannot call any of your 
connections OUT or you will get an error when you try to build the project, and 
the error message is a long way from “Don’t call things OUT.” You can find a list of 
other reserved names that you should not use here: www.xilinx.com/itp/xilinx10/
isehelp/ite_r_verilog_reserved_words.htm.

The schematic is now complete, and now would be a good time to do File  
Save to save the schematic design to file.

Figure 3-9 The completed schematic.
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Step 6: Create a User Constraints File
We now come to a step in the process that is specific to the FPGA board hardware 
that you are using. We are going to use a user constraints file (UCF) to map the 
NET names in our schematic (SEL, A, B, and Q) to the FPGA pin names such as 
P123. This mapping is necessary because each of the evaluation boards and plug-
in shields will use different FPGA pins.

The UCF is created as a source file. To get back to the original Project View, 
click the “Design” tab at the bottom of the Design View. Right-click on “data_
selector” and again select “New Source…” to open the New Source Wizard. This 
time select “Implementation Constraints File” (ISE’s name for a UCF), and enter 
the file name “data_selector_elbert,” “data_selector_mojo,” or “data_selector_
papilio” depending on which board you are using. Also set the location to be 
inside the “src” directory, as shown in Figure 3-10. Click “Next,” and finish the 
Wizard.

Figure 3-10 Creating a user constraints file.
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This will open an empty text editor window where you need to type the follow-
ing text if you are using a Mojo and IO Shield:

# User Constraint File for Data Selector on Mojo IO Shield

# DIP Switch 0 is selector for channels A and B

# Left Push Switch is input A

# Right Push Switch is input B

# LED 0 is output

NET "SEL" LOC = "P120" | PULLDOWN;

NET "A" LOC = "P142" | PULLDOWN;

NET "B" LOC = "P138" | PULLDOWN;

NET "Q" LOC = "P97";

Don’t worry if you have an Elbert or Papilio—they are much the same—you will 
just need to change the pin numbers and a few other options, as you will see 
shortly. 

The lines that begin with a # are comment lines. That is, like the lines of pro-
gram code starting with // in C and Java (and Verilog), which take no part in the 
functioning of the program, the lines starting with # are not part of the configura-
tion information; they are just to make it easier to see what’s going on.

After that, there are a number of NET commands that define the links from the 
net name specified in the schematic to the pin location (LOC) in the actual hard-
ware. Finally, at the end of the lines for the switches, there is a bar symbol followed 
by the word PULLDOWN to enable the internal pull-down resistor for that input pin.

If you refer to Appendices B, C, and D, you will find all the information you 
need to write the UCF for your FPGA board. Thus, for example, in Appendix C, 
which is for the Mojo and Mojo IO Shield, Figure C-2 shows the schematic for the 
push switches on the Mojo IO board and is repeated here as Figure 3-11. This tells 
you, for example, that the button labeled “LEFT” on the Mojo IO board is con-
nected to pin P142 of the FPGA.

Here is the very similar UCF for the Elbert 2:

# User Constraint File for Data Selector on Elbert 2

# DIP Switch 8 is selector for channels A and B

# Left Push Switch (SW1) is input A

# Right Push Switch (SW2) is input B
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Figure 3-11 Mojo IO button schematic.
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# LED D1 is output

NET "SEL" LOC = "P70" | PULLUP;

NET "A" LOC = "P80" | PULLUP;

NET "B" LOC = "P79" | PULLUP;

NET "Q" LOC = "P55";

Apart from different FPGA pin allocations, the switch pins are all set to PULLUP 
rather than PULLDOWN because unlike the Mojo IO Shield, the Elbert switches 
switch to ground.

Finally, here is the UCF for the Papilio:

# User Constraint File for Data Selector on Papilio Logic Mega Wing

# Slide Switch 0 is selector for channels A and B

# Left Push Switch on the joystick input A

# Right Push Switch on the joystick input B

# LED 0 is output

NET "SEL" LOC = "P91";

NET "A" LOC = "P34" | PULLUP;

NET "B" LOC = "P36" | PULLUP;

NET "Q" LOC = "P5";

The slide switch for the Papilio LogicStart MegaWing does not require either a 
pull-up or a pull-down resistor to be enabled; however, the joystick switches 
require pull-ups (see Appendix D).

Step 7: Generate the .bit File
You are now ready to synthesize the design and generate the programming file to 
be downloaded onto your board. So select the “data_selector” entry in the hierar-
chy, and a number of options for things to do will appear below it in the Processes 
section. One of those processes will be “Generate Programming File” (Figure 
3-12). Right-click on this option, and select “Run.”

If all is well, lots of text will appear in the Console as the programming file is 
generated. If there are any errors, this is where they will appear, so read any error 
messages carefully. They should point to where any problems are located. Often 
you will find that an error is a misplaced punctuation sign or an incorrectly spelled 
name in the UCF.
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Figure 3-12 Generating the programming file.
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Step 8: Program Your Board
The end result of all this activity will be a file within the working directory of the 
project called data_selector.bit. It is this file that we need to transfer onto your 
board using the loader specific to your board (that you downloaded earlier). The 
process is the same whatever loader you are using:

•	 Connect your board to your computer using a USB cable.

•	 Make sure that the correct serial port is selected in the loader’s user 
interface.

•	 Select the .bit file to be installed on the FPGA board.

•	 Install the .bit file on the FPGA board by pressing the “Program, Load or 
Run” button depending on your board’s loader program.

The three loaders’ tools are shown in Figure 3-13.
The Mojo loader also offers you the option of “Store to Flash” (select this) and 

an “Erase” button. You do not need to click the “Erase” button; the “Load” button 
will erase before loading. One idiosyncrasy with the Mojo loader is that the files 
selector defaults to .bin rather than .bit, so to select the generated .bit file, you will 
have to set the filter to “all files.”

The Papilio Loader has an option to write to SPI Flash, FPGA, or Disk File; 
select “SPI Flash.”

Testing the Result
Figure 3-14 shows a close-up of the Elbert 2 board with the controls for testing the 
data selector shown. Slide switch 8 selects either button SW1 or button SW2 to 
control LED D1.

Put slide switch 8 into the left ON position. Initially, you should see LED D1 on 
the Elbert V2 light up. If you press SW1, the LED will turn off. Release the button, 
and LED D1 will turn on again. Pressing SW2 will have no effect. Now put slide 
switch 8 into the OFF position, and you will notice that SW1 no longer has any 
effect, but SW2 does alter the LED’s state. 

This is the data selector working as it should. The logic is a little confusing 
because the push-switch inputs are effectively inverted as they are pulled to GND 
when you press the button.
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Figure 3-13 FPGA board loader tools: (top) Elbert; (middle) Mojo; (bottom) Papilio.
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Figure 3-14 Testing the data selector on an Elbert.

Figure 3-15 shows the same experiment using the Mojo. This time LED 0 on 
the IO Shield is used as the output Q. Slide switch 0, selector SEL, and inputs A 
and B use the left and right push buttons, respectively. Carry out the same test 
procedure as described for the Elbert 2 to verify that the data selector is working.
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Figure 3-15 Testing the data selector on a Mojo.

When testing on the Mojo, the push buttons are HIGH when pressed, so the 
inputs are not inverted.

The Papilio LogicStart MegaWing uses a joystick to provide inputs A and B. 
Move the joystick to the left for A and to the right for B (Figure 3-16).

A 4-Bit Counter Example
In Chapter 2 we saw how a counter could be built using four D flip-flops. Let’s 
build that counter using the schematics editor in a new project.
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Figure 3-16 Testing the data selector on a Papilio.

As you did with the “selector” example, start by creating a new project. Give it 
the name “counter.” You should find that when you run the New Project Wizard, 
this time it remembers all the project settings from the last project, which means 
that you can accept the default settings and they will be correct for your board. If 
you would prefer to load up the finished project, then you can find it in the down-
loads for this book (see Chapter 2) in Project Folder ch03_counter.

Drawing the Schematic
Create a new Schematic source (“counter”), and draw the schematic. It can be 
hard to find the right symbols, so you will probably need to drop a selection of 
symbols onto the canvas before you find the right ones. Delete the ones that you 
don’t want by selecting them and then pressing the delete key. The symbol we 
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used for each D Flip-flop was found in the category Flip_Flop and called fd. The 
D flip-flops in ISE’s library do not have inverting outputs, so use four NOT (inv) 
gates to provide the inverted output. Add some IO markers for Clock and QA to 
QD. The end result should look like Figure 3-17.

Implementation Constraints Files
You also need to create an implementation constraints file (or UCF) and place the 
following contents in it. Here is the one for the Elbert 2:

# User Constraint File for 4 digit counter on Elbert 2

# Left Push Switch (SW1) is Clock

# LEDs D1 to D4 are outputs

NET "Clock" LOC = "P80" | PULLUP | CLOCK_DEDICATED_ROUTE = FALSE;

NET "QA" LOC = "P55"; 

NET "QB" LOC = "P54"; 

NET "QC" LOC = "P51"; 

NET "QD" LOC = "P50";

The new first line specifies that Clock is a clock signal that should not be given 
a dedicated routing. This is so because it is connected to a push button and not to 
the high-frequency built-in clock. Later in this book you will see that, in practice, 
you will use synchronous designs that change state only with each tick of the sys-
tem clock. For now, though, let’s just ignore that and make a simple counter.

The UCF for the Mojo is almost identical and just requires the pin names to be 
changed:

# User Constraint File for 4 digit counter on Mojo

# Right Push Switch is Clock

# LEDs 0 to 3 are outputs

NET "Clock" LOC = "P138" | PULLDOWN | CLOCK_DEDICATED_ROUTE = FALSE;

NET "QA" LOC = "P97"; 

NET "QB" LOC = "P98"; 

NET "QC" LOC = "P94"; 

NET "QD" LOC = "P95";
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Figure 3-17 Schematic for a 4-bit counter.
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The same is true for the UCF for the Papilio:

# User Constraint File for 4 digit counter on Papilio and LogicStart  

# MegaWing

# Joystick select Push Switch is Clock

# LEDs 0 to 3 are outputs

NET "Clock" LOC = "P22" | PULLUP | CLOCK_DEDICATED_ROUTE = FALSE;

NET "QA" LOC = "P5"; 

NET "QB" LOC = "P9"; 

NET "QC" LOC = "P10"; 

NET "QD" LOC = "P11";

Testing the Counter
Generate the programming file, and then deploy it using the loader tool for your 
board. Note that you will probably see some warnings from ISE, but you can dis-
regard these for now.

Press whatever push button you are using for the Clock signal, and you will see 
the LEDs count in binary. You will also notice that there is a fair bit of key bounc-
ing from the push switches, and the LEDs may skip past some of the numbers. In 
Chapter 5 we will show you how to “debounce” such button presses to prevent 
false triggerings.

Summary
The two example projects in this chapter that use the schematic editor are simple 
enough to make the schematic editor practical, but as the complexity of your 
designs grows, it becomes quicker to use Verilog to define your logic. In Chapter 
4 we will start by reimplementing the two examples here using Verilog and then 
move on to look at some more complex examples.
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4
Introducing Verilog

Verilog is a hardware description language (HDL). Along with its rival lan-
guage, VHDL, it is the most common way to program an FPGA. You probably 
found that programming a FPGA using a schematic is familiar and easy to 
understand, so why would you want to learn a complicated programming lan-
guage to do the same thing? Well, the answer is that, actually, as designs become 
more and more complex, it is easier to represent a design using a programming 
language than to draw it.

Verilog looks like a programming language, and indeed, you will find “if” state-
ments, code blocks, and other software-like constructions, including the ability to 
add and subtract numbers. 

The examples in this chapter, along with all the examples in this book, can be 
downloaded from the GitHub repository for this book, as described at the end of 
Chapter 2.

Modules
Software programmers will recognize a Verilog module as being very like a class 
in object-oriented programming. It defines a collection of logic with public and 
private properties that can be instantiated a number of times in your design.

If electronics is more your thing, think of a module as a subassembly of the 
design with defined connections so that it can be wired up to other modules or, if 
you like, an IC. A simple design may be all contained in a single module, but when 
things start to get a little complex, the design will become a collection of modules 
that are then interconnected. In this way, you will also be able to make use of other 
people’s modules in your designs.
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Wires, Registers, and Buses
What would be variables in a conventional programming language are wires (con-
necting one thing to another) or registers (which store state and are therefore 
more like a programming variable) in Verilog. A wire and a register refer to a 
single binary digit. Often you want to work on more than one bit at a time, so you 
can group a number of bits into a vector and operate on the vector as a whole. This 
is rather like using a word of arbitrary length in a conventional programming lan-
guage. When defining such vectors, the upper and lower bits are specified. The 
following example defines an 8-bit counter:

reg[7:0] counter;

Parallel Execution
Because Verilog is describing hardware rather than software, there is an implicit 
parallelism in Verilog. If you have three counters in a design, all connected to dif-
ferent clocks, that’s just fine. Each will do its own thing. It is not like using a 
microcontroller, where there is a single thread of execution.

Number Format
A lot of the time in Verilog, you will be dealing with a vector, and it is convenient 
to assign values using numbers of any bit size in any radix (number base). To 
accomplish this, Verilog uses a special number syntax. If you do not specify the 
number of bits and the radix, then the number is assumed to be decimal, and 
unused bits are set to 0. The number format starts with the number of bits, then 
there is an apostrophe, followed by a radix indicator (b = binary; h = hex; and d = 
decimal), and this is followed by the number constant.

Here are some Verilog integer constants:

4'b1011 four-digit binary constant 

8'hF2 8-bit hex constant 

8'd123 decimal number 123 represented in 8 bits

123  decimal number 123 with no defined bit size  
(ISE will do its best to guess the size)
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Data Selector in Verilog
Rather than just looking at Verilog in isolation, let’s combine it with learning how 
to use it in ISE. Either follow along with the instructions here to create the project 
from scratch, or use the project from this book’s downloads (see Chapter 2). The 
Project Folder in the downloads is called ch04_data_selector_verilog.

The first step is to create a new project. This time when the New Project 
Wizard appears (Figure 4-1), give it the name “data_selector_verilog,” and change 
the drop-down list at the bottom (Top-Level Source Type) to be “HDL” (hardware 
definition language). This is a change from when you created a new project for a 
schematic design.

Figure 4-1 The New Project Wizard.
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When you create the project, remember to change the settings for your board 
using Appendices B to D. If you are sticking to just one of these boards, then ISE 
helpfully should remember the settings from the last project you created. 

Now we need to create a new source file for the Verilog version of the data 
selector. So right-click on the project, and select the option “New Source ….” This 
will open the New Source Wizard (Figure 4-2).

Select a source type of Verilog module and give the source the name “data_
selector,” as you did with the schematic design; then set the directory to be “src.” 
When you click “Next,” you will be prompted to define the inputs and outputs to 
the module (Figure 4-3). This step generates some code for the Verilog module to 
get you started. If you prefer, you can just click “Next” without adding any inputs 
or outputs and type in the Verilog text directly. However, it does save a little typ-
ing, so for now, let’s use the Wizard.

Use the New Source Wizard window to define three inputs (A, B, and SEL) and 
one output (Q), as shown in Figure 4-3. Click “Next,” and then after the summary 
screen, click “Finish.” The Wizard will then generate a template file for your 

Figure 4-2 Creating a new Verilog source file.
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Verilog module using the information you entered (Figure 4-4). This file has the 
standard extension of .v for Verilog.

At present, this module does not actually do anything, and it has a large block of 
comment at the top that you might like to delete for clarity. Let’s analyze what has 
been generated by the New Source Wizard. Here is the code that was generated:

module data_selector(

 input A,

 input B,

 input SEL,

 output Q

 );

endmodule

The module starts with the module keyword and is followed by the name of the 
module. Inside the parentheses are the inputs and outputs to the module. The 
word endmodule marks the end of the module definition.

Figure 4-3 Defining inputs and outputs for the new Verilog source.
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Modify the text so that it appears as follows. Note that the additions are marked 
in boldface.

module data_selector(

 input A,

 input B,

 input SEL,

 output reg Q

 );

Figure 4-4 The generated module code.
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always @(A or B or SEL)

begin

 if (SEL) 

   Q = A;

 else

   Q = B;

end

endmodule

The first change is the addition of the word reg to the output definition for Q. 
This indicates that Q is a register and therefore can be modified.

The other addition is the always block. Immediately after always is the “sen-
sitivity” list that follows @. This specifies the signals (separated by the word or) to 
which the always block is sensitive. That is, the code between begin and end 
comes into play. It is tempting to think of this code as if it were a programming 
language rather than a hardware definition language.

If SEL is 1, then Q will be assigned to whatever the state of A is. Otherwise, Q 
will be set to the value at input B. This is exactly what the selector should do.

That’s all there is to the Verilog for the “data_selector” example; however, you 
still need an implementation constraints file or UCF if you want to try out the 
example. The one that you created for the schematic version of this project will 
work just fine. Copy your .ucf file from the src directory of your schematic data_
selector project into the src directory of your data_selector_verilog project, and 
then right-click in the ISE hierarchy area, and select “Add Source….” Then navi-
gate to the .ucf file that you just copied into the data_selector_verilog folder.

Build the project, and then install it on your board in the same way you did for 
the schematic project. The project should work in the same way.

A Counter in Verilog 
The “counter schematic” project can also be implemented in Verilog. Either fol-
low along with the instructions here to create the project from scratch, or you can 
use the project from the book’s downloads (see Chapter 2). The project folder in 
the downloads is called ch04_counter_verilog.

This time, when you create the new project you could call it “counter_verilog.” 
Create a new Verilog module source file in a new src directory (call it “counter”), 
and add the inputs and outputs as shown in Figure 4-5. 
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Figure 4-5 Defining the inputs and outputs for the counter.

The output Q is defined as being a bus by checking the “Bus” checkbox. The 
“MSB” column indicates its most significant bit number (in this case 3), and the 
least significant bit (LSB) of 0 is entered in the “LSB” column.

Finish the Wizard, and the generated code will start to look like this:

module counter(

 input Clock,

 output [3:0] Q

 );

You now need to add the counting logic for the counter, so edit the code to be:

module counter(

 input Clock,

 output reg [3:0] Q

 );

  

always @(posedge Clock)

begin

 Q <= Q + 1;
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end

endmodule

The added code is shown in boldface. The sensitivity list in the always block 
includes positive edges of the Clock signal. Whenever the Clock signal goes high, 
the code between begin and end comes into play. This simply adds 1 to Q. 

When adding 1 to Q the <= rather than just = operator is used. This type of 
assignment is called nonblocking and should always be used with sequential logic. 
The reason for this will become apparent later in this chapter when you look at 
synchronous logic.

Note that in this case, since 0 and 1 are the same in any radix, we have not 
specified the radix or number of bits in the number constants.

You now need to add a .ucf file for the project that is a modified version of the 
.ucf file from the schematic-based project that you created in the original counter 
project in Chapter 3. The only change to this is that now the output is a bus Q[0] 
to Q[3] rather than separate outputs QA to QD. The version of this file for the 
Papilio is listed next, with the changes from the schematic version highlighted in 
boldface.

# User Constraint File for 4 digit counter on Papilio and LogicStart  

# MegaWing

# Joystick select Push Switch is Clock

# LEDs 0 to 3 are outputs

NET "Clock" LOC = "P22" | PULLUP | CLOCK_DEDICATED_ROUTE = TRUE;

NET "Q[0]" LOC = "P5"; 

NET "Q[1]" LOC = "P9"; 

NET "Q[2]" LOC = "P10"; 

NET "Q[3]" LOC = "P11";

This is very similar to the one for the schematic-based counter, but in this case 
the separate bits of the Q bus are linked to the LEDs using square bracket nota-
tion to indicate the bit linked to a particular LED. Rather like arrays in many 
programming languages, the square bracket notation allows access to individual 
bits of the bus.

Generate the binary file, and install it on your board. Then you should have 
something that behaves just like the schematic version.
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Synchronous Logic
The preceding counter example illustrates how easy it is to define some hardware 
in Verilog. However, it is missing an important feature that you will find in almost 
any Verilog example that you would care to look at. That is, it is not synchronized 
with a clock.

The example works, but only because it is so simple. The problem that arises, 
as soon as projects become even slightly more complex than this, is that signals 
take different times to propagate through logic gates, and this means that an out-
put that depends on inputs from many other parts of the system and possibly even 
the output itself will take time to settle to its final value. It may have glitchy pulses 
that should be ignored by other parts of the system. Such outputs are described as 
metastable.

This is why you will have seen some warning messages as you built the project, 
not least because the clock input to the counter appears to ISE as a synchronizing 
clock input, but we are just using it as a general input connected to a switch.

The solution to this problem of metastable outputs is to use a system-wide 
clock (usually tens of megahertz). Everything then happens each time the clock 
ticks. This means that any metastable outputs will have had time to settle before 
their value is sampled. The <= operator that you used in the counter example in 
preference to = ensures that all assignments using <= within an always block 
happen at the same time (in the same clock cycle.) This gives time for all the out-
puts in the system to settle well before the next clock cycle occurs.

Summary
You should now be starting to get familiar with the ISE Design Suite and UCFs. 
The Verilog examples in this chapter are both implemented as single modules. In 
Chapter 5 we will look at a more complex example where the design for a multi-
plexed LED display divides up into a number of modules that are then combined 
to build the project. This design will also convert what we have done so far into a 
synchronous design.
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5
Modular Verilog

When designing a complex system for a FPGA, there is nothing to stop you 
from putting all your Verilog code into one module. However, splitting things up 
makes it easier for others to understand what you have done. This is so because 
they can assume that the component modules perform the role they are sup-
posed to and therefore see a bigger picture of how all the modules work together 
before getting into the nitty-gritty of how each one works. Breaking things up 
into a number of modules also makes it a lot easier to take a module that you 
used in one project and use it in another or to share it with someone else to use 
in their project.

When you create a project with more than one module, you will always have a 
top-level module. This is the module that brings all the submodules together as 
well as the module that will have a UCF associated with it to map the IO pins of 
the FPGA to the signals in the design.

In this chapter, you will start by using a seven-segment decoder module along 
with the counter module of Chapter 4 and expanding the example until eventually 
you have a simple decimal counter that counts up and down on the seven- 
segment multidigit display when you press the UP and DOWN switches.

You can either build the projects up yourself following the instructions here 
or download the completed projects from GitHub, as described at the end of 
Chapter 2.
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A Seven-Segment Decoder
The first reusable module that we are going to build is a seven-segment decoder. 
This will have a 4-bit input. The number at this input or, rather, the numbers 0 to 
9 will be decoded into the correct segment pattern to display the number on a 
seven-segment display.

Figure 5-1 shows how the segments of a seven-segment display are organized. 
Each segment is given a letter A–G with an additional connection to the decimal 
point (DP).

Create a new project called decoder_7_seg. You can also find this project in the 
downloads for this book where it is called ch05_decoder_7_seg. See the section at 
the end of Chapter 2 for downloading this book’s examples.

Figure 5-1 Seven-segment display.
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Create a new Verilog source file in an src directory, and call the file  
“decoder_7_seg.” Write or paste the following code into it:

module decoder_7_seg(

   input CLK,

   input [3:0] D,

   output reg [7:0] SEG

   );

always @(posedge CLK) 

begin

  case(D)

    4'd0: SEG <= 8'b00000011;

    4'd1: SEG <= 8'b10011111; 

    4'd2: SEG <= 8'b00100101;

    4'd3: SEG <= 8'b00001101;

    4'd4: SEG <= 8'b10011001;

    4'd5: SEG <= 8'b01001001;

    4'd6: SEG <= 8'b01000001;

    4'd7: SEG <= 8'b00011111;

    4'd8: SEG <= 8'b00000001;

    4'd9: SEG <= 8'b00001001;

    default: SEG <= 8'b11111111;

  endcase

end

endmodule

Starting with the module header, there is a CLK (clock) input because we want 
the module to synchronize with the FPGA clock. There is also a 4-bit input D that 
will contain the number to be displayed and an 8-bit register output that will be 
the bit pattern to appear on the segments of the LED.

The always block synchronizes on the CLK and contains a new construct 
called a case statement. The case statement is a more concise way of writing a 
whole load of if commands that all have the same value as a condition. Here 
input D is the value of interest to the case statement. If D is 0, then the output seg-
ments (SEG) are set to the bit pattern 00000011. A zero indicates that the seg-
ment should be lit. Thus, referring to Figure 5-1, this says that segments a, b, c, d, 
e, and f should all be lit, leaving just g (in the middle) and the decimal place unlit. 
Each value of D has its own bit pattern.
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The default option at the end of the case statement defines what SEG should 
be set to if none of the values of D match. Because we have a 4-bit value in D, this 
means that any value over decimal 9 will result in all the segments being off.

This module is designed as a useful component to drop into other projects. To 
try it out, you need to create another module (one not designed for reuse) that will 
use this module but also do things like disabling all the digits except one. So create 
a new source file called seg_test, and put the following code into it:

module seg_test(

   input CLK,

   input [3:0] D,

   output [7:0] SEG,

   output [3:0]DIGIT

   ); 

assign DIGIT = 4'b1110;

decoder_7_seg decoder(.CLK (CLK), .SEG (SEG), .D (D));  

endmodule

This module’s inputs and outputs are

•	 CLK: clock

•	 D: Data, 4 bits, each of which will be allocated to a slide switch

•	 SEG: 8 bits, one for each segment

•	 DIGITS: 4 bits, to control the digits that are to be enabled

Note how DIGITS is initialized to just enable the first digit using the inverted 
logic of a zero meaning enabled. Then comes the really interesting line:

decoder_7_seg decoder(.CLK (CLK), .SEG (SEG), .D (D));  

This creates a decoder_7_seg called “decoder,” and its parameters between  
“(” and “)” specify how “decoder” will be connected to the wires and registers in 
the seg_test module. The names starting with a dot name the parameter in the 
decoder and then inside a further set of parentheses are references to “wires” or 
“regs” in seg_test to which the names should be linked. 

Finally, you need to create a UCF for the project. The one for the Mojo is listed 
next; you will find equivalents for the other boards in this book’s downloads (see 
Chapter 2).
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# User Constraint File for 7-seg decoder implementation on Mojo  

# with IO Shield

NET "CLK" LOC = P56; 

# 7-segments

NET "SEG[7]" LOC = P5;

NET "SEG[6]" LOC = P8;

NET "SEG[5]" LOC = P144;

NET "SEG[4]" LOC = P143;

NET "SEG[3]" LOC = P2;

NET "SEG[2]" LOC = P6;

NET "SEG[1]" LOC = P1;

NET "SEG[0]" LOC = P141;

# Digits 

NET "DIGIT[3]" LOC = P12;

NET "DIGIT[2]" LOC = P7;

NET "DIGIT[1]" LOC = P10;

NET "DIGIT[0]" LOC = P9;

# Inputs to slide switches 0 to 3

NET "D[0]" LOC = P120 | PULLDOWN;

NET "D[1]" LOC = P121 | PULLDOWN;

NET "D[2]" LOC = P118 | PULLDOWN;

NET "D[3]" LOC = P119 | PULLDOWN;

To test out the project, upload it onto your board, and then try dialing in differ-
ent values on the slide switches. Figure 5-2 shows this in action.

Button Debouncing
When you were experimenting with the counter project, you may have noticed 
some switch bounce that caused the counter to skip over some numbers. We can 
do something about this by creating a debouncing module that we can use in any 
project where we use a switch.

When it comes to push switches, there are actually three problems to solve. 
First, there is a problem that a button press is by its nature not going to be syn-
chronized to the clock. Second, we have the problem of actually removing any 
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unwanted transitions resulting from the mechanical contacts of the switch bounc-
ing. Finally, there is the problem that you are usually interested in triggering things 
on a transition for a button from OFF to ON (or vice versa) rather than at any 
particular time it is ON or OFF (its state).

We can lump these three features together into one very useful module that 
takes a potentially bouncy switch as an input and gives us as an output a clean, 
synchronized binary state of the button, along with a pair of useful extra outputs 
that go high for a single clock cycle when the button transitions. You can find the 
project illustrating switch debouncing in the project “debounce.” You may wish to 
have this open in ISE because the code is explained.

The code for this is adapted from www.fpga4fun.com/Debouncer.html and 
www.eecs.umich.edu/courses/eecs270/270lab/270_docs/debounce.html. 

The first step is to synchronize the push switch to the clock using a pair of 
registers. Here is the listing for debouncer.v together with explanations of the 
code. You can find a project illustrating the use of this module in the download 
ch05_debouncer file.

module debouncer(

    input CLK,

    input switch_input,

Figure 5-2 Testing the seven-segment decoder module.
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    output reg state,

    output trans_up,

    output trans_dn

    );

// Synchronize the switch input to the clock

reg sync_0, sync_1;

always @(posedge CLK) 

begin

  sync_0 = switch_input;

end

 

always @(posedge CLK) 

begin

  sync_1 = sync_0;

end

The output of the second register (sync_1) is then used for the debouncing code:

// Debounce the switch

reg [16:0] count;

wire idle = (state == sync_1);

wire finished = &count;   // true when all bits of count are 1's

The debouncing itself works by using a timer (in this case a 16-bit timer). This 
then ignores any transitions in the switch signal until the timer has counted to its 
maximum value. In the case of a 16-bit timer, this is 65,536 clock cycles, which for 
the 50-MHz clock of a Mojo is 65,536/50,000,000 = 1.3 ms. On an Elbert 2 with its 
12-MHz clock, this will be 5.4 ms, and on the 32-MHz Papilio One, it will be 2 ms. 
Generally, the switch bouncing will settle out in well under a millisecond, and 5.4 
ms is still a very short time as far as a user is concerned, so the code does not really 
need to be modified for the other boards used in this book despite their different 
clock speeds.

Sizing Counter registers
Most FPGA projects will require one or more counters; in a conventional 
programming language, integer variables are of a fixed size (say 32 or 
64 bits), but in the world of FPGAs, every vector can be of a different 
size.  Deciding how many bits you need requires a little math. A 1-bit 
counter can only hold a maximum value of 0 to 1, a 2-bit counter has a 

05_Ch05.indd   65 8/27/16   9:31 AM



66  Programming FPGAs: Getting Started with Verilog

range of 0 to 3, a 3-bit counter 0 to 8. The upper limit of a counter value 
is one less than 2 raised to the power of N, where N is the number of 
bits in the counter. Table 5-1 will help you to select the number of bits 
you need to hold a particular value. 

Number of Bits Maximum Value (Decimal)

1 1

2 3

3 7

4 15

5 31

6 63

7 127

8 255

9 511

10 1,023

11 2,047

12 4,095

13 8,191

14 16,383

15 32,767

16 65,535

17 131,071

18 262,143

19 524,287

20 1,048,575

Table 5-1 Sizing Counters

The idle wire’s value is set to be the result of comparing state with sync_1. If 
they are the same, then no switch transition in is progress, and idle will have the 
value 1; otherwise, it will have the value 0. In common with such programming 
languages as Java and C, the == operator is used to compare values to see if they 
are equal. 

To detect that the counter is maxed out, the logical & operator is used. When 
used on a multibit register such as “count,” the result is all the bits being ANDed 
together. This state is associated with the wire finished.
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always @(posedge CLK)

begin

  if (idle)

  begin

    count <= 0;

  end

  else 

  begin

    count <= count + 1;  

    if (finished)

    begin

      state <= ~state;  

    end

  end

end

The main always block is synced to the positive edge of the clock and, if noth-
ing is happening, resets count to 0. If a transition is in progress, then the counter 
is incremented. When the counter is finished, the state output is toggled. The ~ 
symbol means invert in Verilog.

It just remains to define the useful extra output values of trans_dn and 
trans_up, which will become high for one clock cycle as the button is pressed or 
released, respectively. This is accomplished by ANDing together the inverted out-
put of the idle signal, whether the timer has “finished” and then state is output 
or, in the case of trans_dn, the inverse of state. 

assign trans_dn = ~idle & finished & ~state;

assign trans_up = ~idle & finished & state;

endmodule

The test program for the debounce code illustrates how the module can be used 
for all three possible outputs. It uses two push buttons, each of which toggles the 
state of separate LEDs, one on trans_dn (button pressed) and one on trans_up 
(buttton released). A third LED simply mirrors the state of the first button.

module debounce(

    input CLK,

    input switch_a,

    input switch_b,

    output reg led_a,
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    output reg led_b,

    output reg led_c

    );

Three wires are defined, s_a_dn (switch a down), s_b_up and s_a_state. 
These wires are then linked to three debouncers d1 to d3. Looking at the first of 
these debouncer lines of code, you can see that the debouncer has been given 
the name d1, and then there are a number of parameters enclosed in parenthe-
ses. Each parameter is in the form of a pair, and each of these pairs is separated 
by a comma. The first parameter, .CLK (CLK), links the CLK signal of the 
debouncer (the CLK preceded by a period) to the CLK used in this debounce 
test module.

The second parameter, .switch_input (switch_a), links the switch_input 
of the debouncer to switch_a. The final parameter, .trans_dn (s_a_dn), con-
nects the trans_dn output of the debouncer to the wire s_a_dn. This repeats for 
the other two debouncer instances. However, these instances use the trans_up 
and state outputs of the debouncers, linking them to the wires s_b_up and  
s_a_state, respectively. 

wire s_a_dn, s_b_up, s_a_state;

debouncer d1(.CLK (CLK), .switch_input (switch_a),  

             .trans_dn (s_a_dn));

debouncer d2(.CLK (CLK), .switch_input (switch_b),  

             .trans_up (s_b_up));

debouncer d3(.CLK (CLK), .switch_input (switch_a),  

             .state (s_a_state));

The always block is synced to the positive edge of the clock and uses the wires 
linked to the outputs of the three debouncers to set the three LEDs.

always @(posedge CLK)

begin

  if (s_a_dn)

  begin

    led_a <= ~ led_a;

  end

  if (s_b_up)

  begin

    led_b <= ~ led_b;

  end

  led_c <= s_a_state;
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end

endmodule

Now that you have tamed our switch inputs, you do not need to worry about 
how this module works; you can just use it within any of your projects that needs 
switch debouncing. To illustrate this, in the next section, you will bring together 
both the debouncer and decoder_7_seg modules to make a third module that is a 
four-digit (three in the case of the Elbert 2) counter display.

Multiplexed Seven-Segment  
Display and Counter
This example (Figure 5-3) will display a number on the multidigit seven-segment 
display. Pressing the “Up” button will increment this number and the “Down” button 
will reset it to zero. You can find the files for this in the project “ch05_counter_7_seg.”

Figure 5-3 A multiplexed seven-segment display.
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All three FPGA boards have multiplexed seven-segment LED displays. In the 
case of the Mojo (with IO Shield) and the Papilio (with LogicStart MegaWing), 
these are four-digit displays, and the Elbert 2 is a three-digit display. In all cases,  
the displays are wired up in much the same way. Figure 5-4 shows the schematic 
for the Mojo IO Shield’s display; the other boards are much the same but use  
different pins.

Each segment of a particular digit is connected to the same segments on the 
other digits. In other words, all the segments A are connected together, all the seg-
ments B are connected together, and so on. Each segment is then connected via a 
resistor (shown as R5 in Figure 5-4) that is in turn connected to a general-purpose 
input-output (GPIO) pin.

This means that if you say set GPIO pin P8 HIGH, then all segments B would 
be enabled. Clearly, you need to be able to display different numbers on each digit. 
To do this, each digit is enabled in turn using the separate digit control pins and 
the segment pattern for that digit set before moving onto the next digit and setting 
a different segment pattern. This happens so fast that you don’t see any flicker—it 
just appears that each digit is displaying a different segment pattern.

Project Structure
Before wading into the detail, it’s worth taking a step back and looking at how the 
various modules used in this project will relate to each other (Figure 5-5).

The module counter_7_seg is called the top-level module (more on this later). 
It is to this module that the UCF for your board will be attached. This module 
implements the logic of the counter: incrementing its value, and resetting it and 
making use of other modules that operate the display.

The counter_7_seg module has one instance of display_7_seg and two 
instances of debouncer within it. The display_7_seg module will be responsible 
for multiplexing the display and refreshing it so that it can display all the digits. 
The module display_7_seg itself contains the decoder_7_seg module that we  
created earlier. It will use decoder_7_seg to set the segment pattern of each digit 
in turn.
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Figure 5-4 Schematic of the Mojo IO Shield’s display.
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Display_7_seg
You have already learned about the two modules decoder_7_seg and debouncer, 
so we can start with the module display_7_seg. Here is the listing for display_7_
seg.v together with explanations of the code:

module display_7_seg(

    input CLK,

    input [3:0] units, tens, hundreds, thousands,

    output [7:0] SEG,

    output reg [3:0] DIGIT

    );

As well as a CLK signal, the module has four (three for the Ebert 2) inputs for 
each of the digit positions called units, tens, hundreds, and thousands. The two 

Figure 5-5 The modules used in the “counter_7_seg” project.
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outputs are for the GPIO pins that will be assigned to control the segments and 
the digit enable lines.

Three vectors are needed:

•	 Digit_data is a 4-bit register that will be assigned to the 4-bit number to 
be decoded for the digit currently being processed.

•	 Digit_position is a 2-bit counter that is used to keep track of which digit 
is currently being displayed.

•	 Prescaler is a 24-bit counter that is used to divide the CLK input to set 
the refresh rate. The prescaler does not need to be nearly as big as 24 bits, 
but this gives us options should we use a really fast FPGA.

reg [3:0] digit_data;

reg [1:0] digit_posn;

reg [23:0] prescaler;

Next, the display_7_seg module needs an instance of decoder_7_seg to con-
vert a 4-bit number into an 8-bit segment pattern. We only need one of these 
because it will be used for each of the digits in turn.

The D input of the decoder is connected to digit_data, and the SEG vector 
is passed along again to the decoder:

decoder_7_seg decoder(.CLK (CLK), .SEG (SEG), .D (digit_data));

Now comes the always block, synched to the clock. This adds 1 to the pres-
caler counter. If the value of prescaler has reached 50,000, then it’s time to 
refresh the next digit. The 50-MHz clock speed of the Mojo means that this will 
happen every millisecond. Four digits therefore will take 4 ms, resulting in a 
refresh frequency of 250 Hz, which is still far too fast for the human eye to see any 
flicker. You can, if you really want, change this value to suit the other board’s clock 
frequencies, but even with the 12-MHz clock of the Elbert 2, the refresh will be 
too fast for the flicker to be visible.

always @(posedge CLK)

begin

  prescaler <= prescaler + 24'd1;

  if (prescaler == 24’d50000) // 1 kHz

  begin

If the prescaler has reached its set value and its time for the next digit refresh, 
a series of updates now take place, to switch in the appropriate digit data.
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First, the prescaler is reset to 0 to start the timer for the next digit refresh, and 
then digit_posn is incremented. If digit_posn is 0, then digit_data is set to 
be units. The digit control pins (DIGIT) are then set to enable just the first digit. 
In this case, the binary pattern 1110 is used. It is 1110 rather than 0001 because 
the digit control pins are active LOW. A 0 means that that digit is enabled.

The same pattern is repeated for each of the other digit positions:

    prescaler <= 0;

    digit_posn <= digit_posn + 2'd1;

    if (digit_posn == 0)

    begin

      digit_data <= units;

      DIGIT <= 4'b1110;

    end

    if (digit_posn == 2'd1)

    begin

      digit_data <= tens;

      DIGIT <= 4'b1101;

    end

    if (digit_posn == 2'd2)

    begin

      digit_data <= hundreds;

      DIGIT <= 4'b1011;

    end 

    if (digit_posn == 2'd3)

    begin

      digit_data <= thousands;

      DIGIT <= 4’b0111;

    end 

  end

end

endmodule

The 2-bit digit_posn counter will automatically wrap around from 3 to 0, 
and so does not need to be explicitly reset. The Elbert 2 has only three digits, so 
the digit_posn counter will need to be reset to 0 after the third digit has been 
displayed. 

Counter_7_seg
The counter_7_seg module is the top-level module that pulls everything together. 
The module’s parameters are all concerned with GPIO pins and will map onto the 
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nets defined in the UCF file. Here is the listing for counter_7_seg.v together with 
explanations of the code:

module counter_7_seg(

    input CLK,

    input switch_up,

    input switch_clear,

    output [7:0] SEG,

    output [3:0] DIGIT

    );

The project requires two push switches, one to increment the count and one to 
clear the display back to 0000. These switches are linked to wires and debounced 
using debouncer modules.

wire s_up, s_clear;

debouncer d1(.CLK (CLK), .switch_input (switch_up), .trans_dn (s_up));

debouncer d2(.CLK (CLK), .switch_input (switch_clear),  

             .trans_dn (s_clear));

Four 4-bit registers are needed, one for each of the four digits:

reg [3:0] units, tens, hundreds, thousands;

The display_7_seg instance is wired up to the CLK and the four-digit registers, 
as well as the SEG and DIGIT connections that will connect to the GPIO pins of 
the FPGA that control the segments and digit selection:

display_7_seg display(.CLK (CLK), 

                      .units (units), .tens (tens), 

                      .hundreds (hundreds), .thousands (thousands),

                      .SEG (SEG), .DIGIT (DIGIT));

Most of the action takes place in the always block. This checks to see if the 
debounced switch s_up has been pressed. If it has, it adds one to units. There 
then follows a sequence of ever deeper if statements that check for the overflow 
of one digit and then increment the next digit and reset the current digit to 0 if this 
occurs:

always @(posedge CLK)

begin

  if (s_up)

  begin

    units <= units + 1;
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    if (units == 9) 

    begin

      units <= 0;

      tens <= tens + 1;

      if (tens == 9) 

      begin

        tens <= 0;

        hundreds <= hundreds + 1;

        if (hundreds == 9) 

        begin

          hundreds <= 0;

          thousands <= thousands + 1;

        end

      end

    end  

  end

If the “Clear” switch is pressed, then all four digits are zeroed:

  if (s_clear)

  begin

    units <= 0;

    tens <= 0;

    hundreds <= 0;

    thousands <= 0;

  end

end

endmodule

Specifying Bit Size and Radix
The sharp-eyed among you will notice that I have been a little 
inconsistent with my number formats when assigning values of 0 or 1. 
Some would say that you should always specify the number of bits and 
the number base. In fact, it is good practice to do so, but for a small 
example such as this, it is not essential. ISE will automatically adjust the 
bit size of the constant to fit the vector to which it is being assigned, and 
the numbers 1 and 0 are the same in every number base.

For numbers other than 0 and 1, it is a good idea to select the bit size 
and radix to avoid any possible confusion. However, there is nothing at 
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all wrong with using decimal—pick whatever number base makes the 
code easiest to understand.

User Constraints File
You will also need a UCF file. The one for Mojo is listed next. You will find suitable 
equivalents for the other boards in the downloads for this book.

# User Constraint File for 7-seg counter on Mojo with IO Shield

NET "CLK" LOC = P56; 

# Switches

NET "switch_up" LOC = "P137" | PULLDOWN;

NET "switch_clear" LOC = "P139" | PULLDOWN;

# 7-segments

NET "SEG[7]" LOC = P5;

NET "SEG[6]" LOC = P8;

NET "SEG[5]" LOC = P144;

NET "SEG[4]" LOC = P143;

NET "SEG[3]" LOC = P2;

NET "SEG[2]" LOC = P6;

NET "SEG[1]" LOC = P1;

NET "SEG[0]" LOC = P141;

# Digits 

NET "DIGIT[3]" LOC = P12;

NET "DIGIT[2]" LOC = P7;

NET "DIGIT[1]" LOC = P10;

NET "DIGIT[0]" LOC = P9;

Importing Source Code for Modules
There are several ways of getting source code for modules that you have created 
into a project. ISE occasionally gets confused about which files belong to it, and I 
have found the least problematic procedure for copying a module from another 
project (say debounce or decoder_7_seg in this example) is as follows:

1. Create the new project.
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2. From your operating system’s file explorer, create a “src” directory inside 
the project directory.

3. Add copies of any module files that this project needs (debouncer.v and 
decoder_7_seg.v) into this “src” directory.

4. From ISE, use the option “Add Source…” and navigate to each of the .v 
files you just added to the “src” directory.

Setting the Top-Level Module
The “Design” tab in ISE shows you the relationship between the modules used in 
your project (Figure 5-6).

You can see in this hierarchical view that everything is correct, with the  
counter_7_seg module containing two debouncer modules and a display_7_seg 
module that itself contains a decoder_7_seg module. If you look closely, you can 
see that the counter_7_seg module has an icon next to it comprising three little 
squares in a triangular arrangement. This indicates that the counter_7_seg  
module is the top-level module of the project.

Figure 5-6 The modules used in the “counter_7_seg” project.
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ISE will often work out for itself what the top-level module is, but sometimes it 
doesn’t, in which case you can specify that a particular module is the top-level 
module by right-clicking on it and specifying the option “Set As Top Module.”

The Three-Digit Version
The Elbert 2 has only three digits rather than the four of the Mojo, so in most 
cases the differences in the Elbert version are simply reducing the number of dig-
its from four to three. One effect of using three rather than four digits is that in 
display_7_seg the digit_posn counter needs to be manually reset to 0 after it 
reaches the hundreds digit:

if (digit_posn == 2'd2)

begin

  digit_data <= hundreds;

  DIGIT <= 4'b1011;

  digit_posn <= 0;

end 

Testing
Build the project and upload it onto your board. You will find that the number on 
the display will increment each time you press “Up” and reset to zero when you 
press the “Clear” button. You will need a lot of patience to test all four digits or 
even all three on the Elbert 2.

Summary
In this chapter, the potential of the FPGA is starting to reveal itself. In Chapter 6, 
we will reuse the modules described in this chapter and go on to produce a realis-
tic example of a countdown timer. The timer example also introduces a key con-
cept in the design of FPGA systems called state machines.
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6
Timer Example

In this chapter, you will build on the general-purpose display_7_seg,  
decoder_7_seg, and debouncer modules to make a countdown timer that actu-
ally functions like a real product. Even an apparently simple device like a timer 
can be tricky to design. To simplify the design, a representation called state 
machines is often used. This technique is not unique to FPGAs and is a great 
way of modeling in diagrammatic form just how a system behaves. This chapter 
also jumps ahead slightly, borrowing a sound-generation module from Chapter 
8 to drive a buzzer that will sound once the countdown has finished.

You can find all the code for this project in the downloads for this book (see 
Chapter 2), and you will find it useful to have the project loaded up in ISE so that 
you can see the code and, if you feel like it, experiment by modifying it. The  
project is called “ch06_countdown_timer.”

State Machines
State machines have their roots in mathematics and, therefore, like many things in 
math, sound really clever but are actually pretty simple when it comes down to it. 
You will also find state machines and drawings of state machines being called 
finite state machines (FSMs) and state transition diagrams (somewhat unfortu-
nately STDs). 

The basic concept is that a system stays in a stable state until some trigger causes 
it to transition to another state. This transition might cause some actions to occur 
during the transition. States are drawn on a diagram as boxes or bubbles and tran-
sitions as lines with arrows that go either from one box to another or from one box 
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back to itself. The transition lines are drawn with a two-part label on them. The top 
part of the label is the condition for the transition to occur (say, a button being 
pressed), and then there is a horizontal line, and under the line appear any actions 
that need to take place during the transition (say, turn a LED on).

There are, of course, other ways of drawing state machines, but this is probably 
the most common. Figure 6-1 shows the state machine for a fictional coffee maker. 
It is assumed that the coffee maker has two heating elements, a boiling element 
and a warming element, with the warming element keeping a hotplate and the 
coffee warm.

The dot and first transition line indicate the starting state for the machine 
when it is first turned on, in this case the “Idle” state. The coffee maker will stay in 
this state until the “Start” button is pressed, at which point the boiling and warm-
ing elements will be turned on, and the machine will be in the “Brewing” state 
until the water reservoir is empty, at which point the power to the heating element 
will be turned off and the state of the machine will be in the “Keeping Warm” 
state. At any point, the user can press the “Cancel” button, which will turn off the 
heating elements and return the machine to its “Idle” state.

This example is very straightforward, and by following the transitions around 
the diagram, you can get a good feel for how the system will operate in practice. 
You could also think up other scenarios that could be dealt with—perhaps an 
“Error” state that is entered if the water reservoir is empty before “Start” is 
pressed. The condition for such a transition might be “Start pressed AND water 
reservoir empty.”

Figure 6-1 The state machine for a coffee maker.
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Drawing State Machines
I find that hand drawing a state machine on the traditional “back of an 
envelope” or even a whiteboard is easier than using software, although 
if you find that you might be returning to the design in the future, you 
may want to scan or photograph the state machine and save it in the 
project folder for future reference.

State Machine Design
To allow this example to work on all three example boards, it will use three  
seven-segment digits (the Elbert 2 has only three digits). Two digits display  
seconds, and one displays minutes. The “Up/Down” push buttons will set the 
minutes, a “Start/Stop” button will begin countdown timing, and a “Cancel” but-
ton will reset the timer to the number of minutes last used. A buzzer will be wired 
up to the board to make a noise when the countdown reaches zero. The state 
machine for this project is shown in Figure 6-2.

The initial state is SETTING, and while in this state, the “Up” and “Down” but-
tons will add or take away 1 from the digit being displayed in the minutes digit. 
Once the “Start/Stop” button is pressed, the project moves to the RUNNING state. 
Pressing “Start/Stop” will immediately take you back to the SETTING state, as will 
pressing “Cancel.” However, pressing “Cancel” will also reset the time. While in 

Figure 6-2 State machine for the timer.
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the SETTING state, every second, the time displayed will be decreased by 1 second 
until the countdown reaches 000, at which point the BEEPING state is entered.

The BEEPING state sounds the buzzer until the “Cancel” button is pressed, at 
which point the system returns to the SETTING state, and the time is reset, ready 
to use the timer again.

Hardware
This project requires an external piezoelectric buzzer that is connected between 
a GPIO pin and GND. In the case of the Elbert 2 and Mojo, this is connected using 
male-to-female jumper wires. However, the Papilio fitted with a LogicStart 
MegaWing makes the GPIO pins inaccessible, so for this board the audio jack is 
used to generate the tone, and you will need to attach an external amplifier to the 
audio jack to hear the tone.

You Will Need
In addition to your FPGA board and any Shield/Wing, you are going to need the 
following items to build this example project. However, if you are prepared to 
forego the buzzing feature, all you need is your board and shield.

Part Source

Passive piezoelectric sounder Adafruit, product ID 160

2× Female-to-male jumper leads Adafruit, product ID 1953

Construction
The sounder leads may be a little small to be held tightly by the jumper wires, but 
putting a little bend in them with pliers will ensure a tight fit. Figure 6-3 shows the 
buzzer attached to the Mojo IO shield, and Figure 6-4 shows it attached to the 
Elbert 2.

Using a Mojo, the two leads to the buzzer should be connected to GND and 
P97, situated on the bottom GPIO connector. It does not matter which way around 
the sounder is connected. To make the project portable, you can add a USB bat-
tery backup, as shown in Figure 6-3. When connecting the buzzer to the Elbert 2, 
one buzzer lead goes to GND on header P1 and the other goes to pin 1 of header 
P1 (GPIO pin P31).
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Figure 6-3 Attaching the buzzer to the Mojo IO Shield.

Figure 6-4 Attaching the buzzer to the Elbert 2.
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When the LogicStart MegaWing is fitted onto the Papilio One, you cannot get 
at the GPIO outputs, so on this board the buzzer tone is played from the audio 
output jack. You will hear it if you plug the lead from a powered speaker into the 
board.

Modules
The structure of the modules (Figure 6-5) is fairly similar to that of the  
“counter_7_seg” project in Chapter 5. However, it does need a few more debounc-
ers for the extra push switches used and also uses a module called “alarm” that will 
be explained fully in Chapter 8.

Figure 6-5 The module structure for the timer project.
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User Constraints File
The user constraints file (UCF) for Mojo and IO Shield is listed next. You will find 
the files for the Elbert 2 and the Papilio One in the parallel projects for those plat-
forms. The main differences involve just the pin allocations and pullup/pulldown 
differences to the switch inputs.

# User Constraint File for 7-seg counter on Mojo with IO Shield

NET "CLK" LOC = P56; 

# Switches

NET "switch_up" LOC = "P137" | PULLDOWN;

NET "switch_dn" LOC = "P139" | PULLDOWN;

NET "switch_cancel" LOC = "P138" | PULLDOWN;

NET "switch_start_stop" LOC = "P140" | PULLDOWN;

# 7-segments

NET "SEG[7]" LOC = P5;

NET "SEG[6]" LOC = P8;

NET "SEG[5]" LOC = P144;

NET "SEG[4]" LOC = P143;

NET "SEG[3]" LOC = P2;

NET "SEG[2]" LOC = P6;

NET "SEG[1]" LOC = P1;

NET "SEG[0]" LOC = P141;

# Digits 

NET "DIGIT[3]" LOC = P12; 

NET "DIGIT[2]" LOC = P7;

NET "DIGIT[1]" LOC = P10;

NET "DIGIT[0]" LOC = P9;

# Output

NET "BUZZER" LOC = P97; # also LED1

Even though the project only uses three digits, all four digits are defined in the 
UCF so that the unused digit can be blanked out.

A new net BUZZER is defined to generate the tone for a piezoelectric buzzer 
attached to GPIO pin P97. This pin is, on the Mojo IO Shield, also connected to 
LED1. 
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The Timer Module
The top-level timer module brings together all the modules that we have already 
met in Chapter 5 (debouncer, display_7_seg, etc.) as well as the alarm module that 
we are borrowing from Chapter 8.

Inputs and Outputs
The declaration for the timer module links the inputs and outputs with the nets in 
the UCF:

module timer(

    input CLK,

    input switch_up,

    input switch_dn,

    input switch_cancel,

    input switch_start_stop,

    output [7:0] SEG,

    output [3:0] DIGIT,

    output BUZZER

    );

Push Buttons
The push-button switches are defined in much the same way as in the  
“counter_7_seg” example from Chapter 5. First, wires are defined for each button, 
and then a debouncer is allocated to each wire that is attached to the trans_dn 
(transition down) output of the debouncer:

wire s_up, s_dn, s_cancel, s_start_stop;

debouncer d1(.CLK (CLK), .switch_input (switch_up), .trans_dn (s_up));

debouncer d2(.CLK (CLK), .switch_input (switch_dn), .trans_dn (s_dn));

debouncer d3(.CLK (CLK), .switch_input (switch_cancel),  

             .trans_dn (s_cancel));

debouncer d4(.CLK (CLK), .switch_input (switch_start_stop),  

             .trans_dn (s_start_stop));

Alarm Module Instance
The great thing about modular design is that you can make use of a module with-
out having to worry how it works. You just need to know how to use it. So, for 
now, let’s just use the alarm module until you meet it again in Chapter 8.
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A register (alarm_on) is used to switch the buzzer on and off. This is linked to 
the enable input of the alarm instance. This instance is also provided with the 
CLK input and the GPIO pin to turn the buzzer on:

reg alarm_on = 0;

alarm a(.CLK (CLK), .BUZZER (BUZZER), .enable (alarm_on));

Modeling Time and the Display
To keep track of the time, separate 4-bit registers are defined for seconds (secs), tens 
of seconds (ten_secs) and minutes (mins). An additional register (mins_stored) 
is used to record a copy of the number of minutes set initially, before the timer 
starts, so that when the timer goes back to its SETTING state, the last time used is 
remembered.

In the case of the Mojo and the Papilio, the unused digit of the display needs to  be 
blanked out. This is done by setting the value of this digit to 10. The display_7_seg 
and decoder_7_seg do not display digits over 9, so this will keep this digit blanked 
out.

The 26-bit register prescaler is used to count the CLK ticks when needed to 
derive a 1-second tick by counting each FPGA clock cycle until a certain value is 
reached (see the section “Tasks” later):

reg [3:0] secs = 0;

reg [3:0] ten_secs = 0;

reg [3:0] mins = 1;

reg [3:0] mins_stored;

reg [3:0] unused_digit = 4’d10; // digits above 9 not displayed

reg [25:0] prescaler = 0;

The display_7_seg module is linked up to the registers described earlier in the 
appropriate digit positions. Once they are linked like this, we just need to change 
the register values secs, ten_secs, and mins, and the display will refresh itself:

display_7_seg display(.CLK (CLK), 

          .units (secs), .tens (ten_secs), .hundreds (mins),

          .thousands (unused_digit),

          .SEG (SEG), .DIGIT (DIGIT));

State Machine Implementation
The Verilog code for the state machine follows the state machine diagram of 
Figure 6-2 very closely. A 2-bit register (state) is used to keep track of the 
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current state. So that you don’t have to refer to the states using a number, the 
localparam command allows you to define three values like constants in con-
ventional programming language called SETTING, RUNNING, and BEEPING to cor-
respond to the three states of the project:

// States

localparam SETTING = 0, RUNNING = 1, BEEPING = 2;

reg [1:0] state = SETTING; 

The key to writing a nice, clean state machine implementation in Verilog is to 
keep the always block as short as possible by using tasks to move the actions 
that occur during a transition out of the body of the always block; otherwise, it 
just gets enormous.

A case statement is used to separate the code for each state. The case state-
ment is an alternative to using lots of if commands if you have a number of con-
ditions that depend on the same value (in this case state). Looking at the first 
clause in the case statement, we have

always @(posedge CLK) 

begin

  case (state)

    SETTING : begin

      handle_settings();

      if (s_start_stop)

      begin

        mins_stored <= mins;

        state <= RUNNING;

      end

    end

This performs some logic contained in the task handle_settings that you will 
see shortly; it then handles the only possible transition out of the SETTING state 
into the RUNNING state that will occur if the “Start/Stop” button is pressed.

This first action stores away mins into mins_stored before setting the new 
value of state. The code for the RUNNING state is more complicated because it 
has three transitions out of this state to handle. It starts by invoking a task  
decrement_time that will count down by 1 second, and then it handles the other 
transitions. If the “Start/Stop” button is pressed, it jumps straight back to the 
SETTING state. The same happens if the “Cancel” button  is pressed, but the 
reset_time task is invoked first.
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Finally, if secs, ten_secs, and mins are all zero, the countdown is complete, 
and the alarm module is enabled to start the buzzer sounding, and the state is set 
to BEEPING:

RUNNING : begin

  decrement_time();

  if (s_start_stop)

  begin

     state <= SETTING;

  end

  if (s_cancel)

  begin

    reset_time();

    state <= SETTING;

  end

  if ((secs == 0) & (ten_secs == 0) & (mins == 0))

  begin

    alarm_on <= 1;

    state <= BEEPING;

  end

end

The BEEPING state only has to deal with the transition that occurs if the “Cancel” 
button is pressed:

    BEEPING : begin

      if (s_cancel)

      begin

        alarm_on <= 0;

        state <= SETTING;

        reset_time();

      end

    end

  endcase

end

Tasks
The remainder of the code in timer.v implements the tasks that are used in the 
always block. In Verilog, you use a task or its relative a function for much the 
same reasons that you would use a function in a programming language. They 
allow you to structure your code and make it more readable by separating out 
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features into more manageable chunks. A function is like a task except that it 
returns a value (i.e., has an output).

You may have noticed that the reset_time task is invoked from more than 
one place in the always block. By separating it into a task of its own, not only 
have we made the code easier to understand, but we have also eliminated the 
potential pitfall of the same code being repeated in multiple places, which could 
lead to problems where the code is improved in one place but not everywhere it 
is used. This is a concept familiar to software programmers as “Don’t Repeat 
Yourself ” (DRY).

The task starts with the keyword task and is followed by the task name. The 
first of these tasks is handle_settings:

task handle_settings;

begin

  if (s_up)

  begin

    mins <= mins + 1;

    if (mins == 9)

    begin

      mins <= 1;

    end

  end

  if (s_dn)

  begin

  mins <= mins - 1;

    if (mins == 1)

    begin

      mins <= 9;

    end

  end

end

endtask

This task deals with the “Up” and “Down” buttons being pressed to increment and 
decrement the mins register. It also handles the wrap-around that occurs if you 
increment the number of minutes over 9 or under 1.

The decrement_time task listed next is responsible for reducing the time by 
1 second on every second. It uses the prescaler register to just do something 
every fifty-millionth tick of CLK. The value 49999999 will match the clock 
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frequency of your FPGA (–1), or your timer will run too fast or too slow, although 
you are unlikely to notice the one-fifty-millionth of a second.

Having hit the 50 millionth –1 tick, prescaler must be set back to 0. The 
register secs is decremented, and the cascading set of if statements ensures that 
the other digits are decremented when the preceding digit hits 0:

task decrement_time;

begin

  prescaler <= prescaler + 1;

  if (prescaler == 26’d49999999) // 50 MHz to 1Hz

  begin

    prescaler <= 0;

    secs <= secs - 1;

    if (secs < 1)

    begin

      secs <= 9;

      ten_secs <= ten_secs - 1;

      if (ten_secs < 1)

      begin

        ten_secs <= 5;

        mins <= mins - 1;

      end

    end

  end

end

endtask

The last task (reset_time) is the simplest: it just sets the secs and ten_secs 
registers back to 0 and the mins to the last used value of mins recorded in  
mins_stored as the timer was started:

task reset_time;

begin

  secs <= 0;

  ten_secs <= 0;

  mins <= mins_stored;

end

endtask

endmodule
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Testing
Make up the project, and deploy it onto your board. You should find that the “Up” 
and “Down” buttons (SW1 and SW6) on the Elbert 2 increment and decrement 
the minutes displayed. Press the middle button (SW3 on the Elbert) to start the 
timer. When the timer reaches 0, the buzzer will sound until you press the “Cancel” 
button (right button on the Mojo, SW4 on the Elbert 2).

Summary
This project makes a good pattern for any project that is complicated enough to 
use a state machine. The key is to break the module down into tasks. In Chapter 
7, you will learn how to generate pulses to control power using pulse-width mod-
ulation (PWM) and to control the positions of servo motors.
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7
PWM and Servomotors

The parallel nature of an FPGA makes it well suited to generating pulses, either 
for controlling power using pulse-width modulation (PWM) or for generating the 
precise streams of timing pulses needed by servomotors. You could, if you really 
wanted, generate pulses on every GPIO pin of the FPGA simultaneously.

Pulse-Width Modulation
Figure 7-1 shows how PWM works. If the pulses are short (say, high for just 5 
percent of the time), then only a small amount of energy is delivered with each 
pulse. The longer the pulse, the more energy is supplied to the load. When power-
ing a motor, this will control the speed at which the motor rotates. When driving 
a LED using PWM, the brightness appears to change. In fact, a LED can turn on 
and off millions of times per second, so the PWM pulses will become pulses of 
light. The human eye and brain do the averaging trick for us, making the apparent 
brightness of the LED vary with the pulse length.

The percentage of time that the PWM output is high is called the duty cycle or 
just duty. In practice, rather than use a percentage, it is more common to express 
the duty as a value between 0 and an upper limit that is a power of 2 minus 1. A 
very common range is 0 to 255, where 0 is completely off and 255 is on all the 
time.
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Figure 7-1 Pulse-width modulation.

A PWM Module
It is surprisingly easy to implement a PWM module. You use a counter and com-
pare the value of duty with the counter. If the counter is below the duty value, the 
output is high, and as soon as this isn’t true, the output is set low.

You can find the code for this module along with a module to test it in the 
downloads for this book (see Chapter 2). The project is called “ch07_pwm.”

PWM Module Inputs and Outputs
The PWM module is called just “pwm” and has two inputs, pwm_clk and duty. 
Its single output, PWM_PIN, will be connected to the GPIO pin on which you want 
the PWM output:
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module pwm(

    input pwm_clk,

    input [7:0] duty,

    output reg PWM_PIN

    );

The pwm_clk input is not the same as the system-wide clock of the FPGA. 
Generally, the PWM frequency is a lot lower than the 12 to 50 MHz of this book’s 
example boards. A common PWM frequency range is 500 Hz to several kilohertz. 
This PWM module uses an 8-bit counter, so the frequency at pwm_clk needs to 
be 256 times the desired PWM frequency. When you look at testing the module, 
you will see how you can use a prescaler counter to derive a lower clock frequency 
to use for the PWM module.

The remainder of the code for the PWM module is as follows:

reg [7:0] count = 0;

always @(posedge pwm_clk)

begin

  count <= count + 1;

  PWM_PIN <= (count < duty);

end

endmodule

The 8-bit counter count is incremented with the positive edge of the pwm_clk 
signal. Output PWM_PIN is then set to be the result of (count < duty). In other 
words, if count is less than duty, PWM_PIN will be 1; otherwise, it will be 0.

A Tester of the PWM Module
In this case, the module to test the PWM module so that you can see that it is 
working is more complicated than the pwm module itself. It will change the 
brightness of a LED (D1 on the Elbert 2, LED 0 on the Mojo IO Shield, and LED0 
on the Papilio with LogicStart MegaWing) when you press the “Up” and “Down” 
buttons (SW1 and SW6 on the Elbert 2).

The UCF for Mojo is as follows:
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# User Constraint File for PWM on Mojo with IO Shield

NET "CLK" LOC = P56; 

# Switches

NET "switch_up" LOC = "P137" | PULLDOWN;

NET "switch_dn" LOC = "P139" | PULLDOWN;

# Output

NET "PWM_PIN" LOC = P97; # LED1

The tester module has inputs of the system clock (CLK) and two switch pins to 
vary the brightness of the LED up and down. The output will link to the LED 
whose brightness is to be changed. The code for the tester module is contained in 
the file pwm_tester.v:

module pwm_tester(

    input CLK,

    input switch_up,

    input switch_dn,

    output PWM_PIN

    );

Wires and debouncer modules are defined in what should now be a familiar way:

wire s_up, s_dn;

debouncer d1(.CLK (CLK), .switch_input (switch_up), .trans_up (s_up));

debouncer d2(.CLK (CLK), .switch_input (switch_dn), .trans_up (s_dn));

A register duty is used to keep a value of duty cycle (0 to 255) that will be set using 
the “Up” and “Down” push switches.

The prescaler register is a 7-bit counter that will be used to divide the system 
clock frequency (50 MHz on the Mojo, 12 MHz on the Elbert 2, and 32 MHz on 
Papilio One) by 128. With a further division of 256 from the 8-bit counter in the 
PWM module, this will result in PWM frequencies of:

•	 Elbert 2: 12 MHz/128/256 = 366 Hz.

•	 Papilio One: 32 MHz/128/256 = 975 Hz

•	 Mojo: 50 MHz/128/256 = 1.53 kHz

The pwm module instance uses the output of bit 6 of the prescaler to provide 
the pwm_clk input to the PWM module:
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reg [7:0] duty = 0;

reg [6:0] prescaler = 0; // CLK freq / 128 / 256 = 1.5kHz

pwm p(.pwm_clk (prescaler[6]), .duty (duty), .PWM_PIN (PWM_PIN));

The always block of the tester module increments the prescaler and then 
checks for any switch presses. The “Up” and “Down” switch presses increase or 
decrease the value of duty by 5:

always @(posedge CLK)

begin

  prescaler <= prescaler + 1;

  if (s_up)

  begin

    duty <= duty + 5;

  end

  if (s_dn)

  begin

    duty <= duty - 5;

  end  

end

endmodule

To keep the Verilog simple, there is no test to see if the value of duty exceeds 
255. If it does, it will simply wrap around because only 8 bits are used for the duty, 
allowing a maximum range of 255.

Trying It Out
Generate the bit file for the project, and load it onto your board. You will see how 
the “Up” and “Down” buttons increase and decrease the brightness of the LED. If 
you want to get a feel for how PWM works, try slowing the whole thing down by 
a factor of approximately 1000. To do this, change lines 13 and 14 of pwm_tester.v 
to add another 10 stages to the prescaler counter. The changes are highlighted in 
boldface here:

reg [16:0] prescaler = 0;

pwm p(.pwm_clk (prescaler[16]), .duty (duty), .PWM_PIN (PWM_PIN));
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Servomotors
Servomotors (Figure 7-2) are a combination of motor, gearbox, and sensor that 
are often found in remote-control vehicles to control steering or the angles of 
surfaces on remote-control airplanes and helicopters.

Unless they are special-purpose servomotors, they do not rotate continuously. 
They usually only rotate through about 180 degrees, but they can be accurately set 
to any position by sending a stream of pulses. Figure 7-3 shows a servomotor and 
shows how the lengths of the pulses determine the position of the servo.

Figure 7-2 A small 9-g servomotor ( left) and standard RC servomotor (right).

Figure 7-3 Controlling a servomotor with pulses.
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A servomotor has three connections: GND, a positive power supply (5 to 6 V), 
and a control connection. The GND connection is usually connected to a brown 
or black lead, the positive connection to a red lead, and the control connection to 
an orange or yellow lead.

Although the motor can draw considerable current, the control connection 
draws very little current. The servomotor expects to receive a pulse every 20 ms 
or so. If the pulse is 1.5 ms in duration, then the servo will sit at its middle posi-
tion. If the pulse is shorter, then it will settle in a position to one side, and if the 
pulse is longer, it will move to a position on the other side of the center position.

Hardware
To control a servomotor with your FPGA board, you are going to need a few parts.

You Will Need
In addition to your FPGA board you are going to need the following items to build 
this example project:

Part Source

Mini 9-g servomotor Adafruit, product ID 196

3× Female-to-male jumper leads Adafruit, product ID 1953

Male-to-male jumper lead Adafruit, product ID 760

DC barrel-jack-to-screw-terminal adapter Adafruit, product ID 368

6-V battery box or 6-V at 1-A power supply Adafruit, product ID 830

Although it is possible to power at least a small servomotor from the 5-V supply 
of your FPGA, it is better to use a separate power supply because the large startup 
currents can cause the FPGA to reset.

Construction
Figure 7-4 shows the project wired up on the Mojo board. Neither the Mojo nor 
the Papilio needs to have a shield attached. The following connections should be 
made:

•	 Negative supply lead of the servomotor (black or brown) to a GND 
connection on the FPGA using a male-to-male jumper wire
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Figure 7-4 A servomotor controlled by a Mojo (using external power supply).

•	 Negative connection from the screw terminal adapter to another GND 
connection on the FPGA

•	 Control lead of the servomotor (orange or yellow) to P31 (header P1 pin 1) 
on the Elbert 2 or P97 on the Mojo IO or P31 (header C pin 0) on the 
Papilio One using a male-to-male jumper wire

•	 Positive lead of the servomotor to the positive terminal on the screw 
terminal adapter

If you have a small servomotor and want to see if it will work from the Mojo or 
the Papilio’s 5-V power connection, you can connect the positive-supply connec-
tion lead on the servomotor directly to the board and avoid using an external 
power supply at all. This is shown in Figure 7-5. Note that the Elbert 2 does not 
have an accessible 5-V terminal.

Figures 7-6 and 7-7 show a servomotor wired to an Elbert 2 and Papilio One, 
respectively.
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Figure 7-5 A servomotor controlled by a Mojo (no external power supply).

Figure 7-6 A servomotor controlled by an Elbert 2 board.
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Figure 7-7 A servomotor controlled by a Papilio One board.

A Servo Module
The servo module and a test program to use it can be found in the project  
“ch07_servo.” The servo module itself is in the file servo.v and is actually the same 
for all three boards despite their different clock speeds.

The module has inputs of CLK and pulse_len. The input pulse_len is the 
duration of the pulse in microseconds. This is a 16-bit number giving a maximum 
duration of 65,536 μs (65 ms). Given that the pulses are going to be arriving every 
20 ms, this is actually far more than is needed for the servo’s requirement of a 
pulse between 1 and 2 ms. This allows you to use this module for high-resolution 
PWM.

The modules output CONTROL_PIN will carry the train of pulses:

module servo(

    input CLK,

    input [15:0] pulse_len,  // microseconds

    output reg CONTROL_PIN

    );

To get around the problem of timing being messed up by the differing clock 
speeds of the FPGA boards, a parameter is used. This differs from the input and 
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output parameters of the module in that it is evaluated when the project is being 
synthesized (the bit file generated) rather than when it’s actually running. You 
declare a parameter like this:

parameter CLK_F = 50; // CLK freq in MHz

Two 16-bit registers, prescaler and counter, are used to control the pulse  
timing:

reg [15:0] prescaler;

reg [15:0] count = 0;

The always block is synchronized with the FPGA’s clock, and the first step is 
to add 1 to the prescaler. The prescaler will reach the value of the parameter 
CLK_F - 1 every microsecond. When it does so, the prescaler will be reset, and 
then 1 will be added to count. The control pin is then set to the result of compar-
ing count with pulse_len in the same way as the PWM code at the start of this 
chapter.

To maintain a 20-ms pulse length, when count reaches 19,999, it is also reset:

always @(posedge CLK)

begin

  prescaler <= prescaler + 1;

  if (prescaler == CLK_F - 1) 

  begin

    prescaler <= 0;

    count <= count + 1;

    CONTROL_PIN <= (count < pulse_len);

    if (count == 19999) // 20 milliseconds

    begin

        count <= 0;

    end

  end

end

endmodule

There are two variations of the test code. The Elbert 2 and Mojo use “Up” and 
“Down” buttons (SW3 and SW5 on Elbert 2) and a joystick on the Mojo IO Shield 
to nudge the pulse length (and servo position) up or down by 100 ms. The Papilio’s 
LogicStart shield covers up the GPIO pin connectors, so the LogicStart is not 
used, which means no buttons to control the servo. So the test program for this 
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board cycles the pulse length up in steps of 100 μs until it gets to 2,500 μs, and 
then it resets it to 500 μs.

Both test programs provide pulses in the range 0.5 to 2.5 ms, which is a slightly 
wider range than the standard servo pulse range, so you will find that there might 
be some jitter in the servos at the ends of the range. Using the wider range does 
allow you to use the maximum range of rotation for your servomotor.

The test program for the Elbert 2 (servo_tester.v) is as follows:

Module servo_tester(

    input CLK,

    input switch_up,

    input switch_dn,

    output CONTROL_PIN

    );

wire s_up, s_dn;

debouncer d1(.CLK (CLK), .switch_input (switch_up), .trans_up (s_up));

debouncer d2(.CLK (CLK), .switch_input (switch_dn), .trans_up (s_dn));

reg [15:0] pulse_len = 500; // microseconds

servo #(12) p(.CLK (CLK), .pulse_len (pulse_len), .CONTROL_PIN  

       (CONTROL_PIN));

always @(posedge CLK)

begin

  if (s_up)

  begin

    pulse_len <= pulse_len + 100;

  end

  if (s_dn)

  begin

    pulse_len <= pulse_len - 100;

  end  

end

endmodule

The test program is very similar in operation to the test program for PWM. 
The main thing to note is that where the servo module is instantiated, the text 
#(12) is used to override the CLK_F parameter of the servo module to the value 
12. If you had multiple parameters, the values would be separated by commas.
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The code for the Mojo version is almost identical, but the always block for the 
Papilio version that steps the servo from one end of its travel to the other is as fol-
lows:

always @(posedge CLK)

begin

  prescaler <= prescaler + 1;

  if (prescaler == 32000000) // 1Hz

  begin

    pulse_len <= pulse_len + 100;

    if (pulse_len == 2500)

    begin

      pulse_len <= 500;

    end

  end

end

It uses its own prescaler to add 100 to pulse_len every second until it reaches 
2,500.

Summary
Chapter 8 will turn your attention from controlling power using PWM and servo-
motors to generating pulses to make sounds. This includes revisiting the alarm 
module that you made use of in the countdown timer project of Chapter 6.
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8
Audio

The Mojo, Papilio, and Elbert 2 both have built-in 3.5-mm sockets designed to 
attach a pair of headphones or an audio jack to an external amplifier. It is also 
pretty straightforward to connect a GPIO pin of the Mojo to an audio amplifier. 
In this chapter, you will start by looking at the “alarm” module that you used in 
the countdown timer of Chapter 6 and then go on to look at some more complex 
sound-generation examples including playing a short recorded sound file.

Simple Tone Generation
The code for the “alarm” module used in Chapter 6 is listed next for the Papilio 
One and LogicStart shield. You can find the code for this in both the “ch06_count-
down_timer” and “ch08_alarm” projects in the downloads for this book (see 
Chapter 2). Here is the version for the Papilio One (32-MHz clock).

module alarm(

    input CLK,

    input enable,

    output reg BUZZER

    );

reg [25:0] count;

always @(posedge CLK) 

begin

  count <= count + 1;

  if ((count == 26’d32000) & enable) // 1kHz

  begin
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    BUZZER <= ~ BUZZER;

    count <= 0;

  end

end

endmodule

The module generates a 1-kHz signal by using a counter that is incremented on 
every tick of the CLK. When the counter reaches 32,000, the output BUZZER is tog-
gled, and the counter is reset to 0. Thus, 32,000 ticks at the 32 MHz of the Papilio 
clock equates to the output tone of 1 kHz. When using this on the 50-MHz-clocked 
Mojo, the value 50,000 is used, and on the Elbert 2’s 12-MHz clock, 12,000 is used.

The following UCF for the Papilio outputs the tone on P41, which is connected 
to the audio output jack. Plug in a pair of headphones or some powered speakers, 
and you will hear a fairly ugly 1-kHz square-wave tone. On the Papilio, the note is 
silenced by pressing slide switch 0, and on the Elbert 2, SW1 silences it. Mercifully, 
on the Mojo, the tone is only sounded when the “Center” button is pressed.

# User Constraint File for 1kHz Alarm tone playing on Papilio  

# and LogicStart

NET "CLK" LOC = P89; #32MHz 

# Switches

NET "enable" LOC = "P91"; # Slide switch 0

# Output

NET "BUZZER" LOC = "P41";

The Elbert 2 version also uses the audio jack, but for the Mojo version, you will 
need to provide your own connection to powered speakers (see next section).

If you want to use a piezoelectric sounder rather than powered speakers, see 
Chapter 6.

Audio Output from the Mojo
Figure 8-1 shows the Mojo with IO Shield wired for sound. A 1-kΩ resistor and a 
short length of solid-core wire are used to connect GPIO pin P97 and GND to an 
audio lead connected to a powered speaker. The wire and resistor leads are just 
wrapped around the audio jack’s ground and tip segments of the jack plug.
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Figure 8-1 Connecting the Mojo to an audio jack.

You may want to make something more substantial using some header pins 
and an in-line 3.5-mm socket.

A General-Purpose Tone/Frequency 
Generator
The “alarm” project is about as simple as tone generation gets. To improve it, we 
can make a general-purpose tone-generator module that will be parameterized 
for the clock frequency of your board and will also allow you to specify the tone to 
generate as one of its inputs.

You can find the project directory for this module in the downloads for this 
book in the directory ch08_tone. See Chapter 2 for instructions on downloading 
the code for this book.
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Rather than play the generated frequency through the audio jack, the test pro-
gram for this module will generate three different frequencies on three different 
pins of the FPGA board. If you have an oscilloscope or multimeter with a fre-
quency setting, then you will be able to verify the signal being generated. If you 
don’t, then change the location (LOC) of one of the “tone” NETs to your audio jack 
as per the “alarm” project and listen to the tones through your amplifier—although 
you may struggle to hear the 12.5-kHz tone.

The Tone Module
The tone module has inputs of the system clock (CLK) and the period of the tone 
to be generated in microseconds and a single output of tone_out. A parameter 
CLK_F is used to configure the module’s prescaler to suit the clock frequency of 
your board. The reason that the period is used rather than the frequency is that to 
convert the frequency to a number of clock cycles to count in Verilog would 
require division (see the sidebar “Frequency and Period”). Division by anything 
except powers of 2 (1, 2, 4, 8, 16, etc.) in Verilog is not possible without the use of 
a division module and would require more than one clock cycle to perform.

Frequency and Period
The frequency of a clock is the number of complete cycles (0 to 1 back 
to 0 again) per second. The period of a clock is the time taken for one 
cycle. So, for a very slow clock of 1 Hz (1 cycle per second), the period 
is 1 second. For a 1-MHz clock, the period is 1/1,000,000 second or 1 
microsecond.

For a particular frequency f, the period is 1/f. The periods listed in 
Table 8-1 represent some noteworthy frequencies that you might like to 
use with the tone module.

Frequency (Hz) Period (microseconds) Notes

20 50,000 Lower limit of human hearing

20,000 50 Upper limit of human hearing

1,000 1,000

261.63 3,822 Middle C

Table 8-1 Noteworthy Frequencies and Periods
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module tone(

    input CLK,

    input[31:0] period, // microseconds 

    output reg tone_out

    );

parameter CLK_F = 32; // CLK freq in MHz

Two counters are used. The prescaler counter reduces the clock frequency 
to 2 MHz, and the counter counter is used to count the prescaled clock. The 
prescaler generates a 2-MHz clock rather than 1 MHz because the output is going 
to be toggled (0 to 1 or 1 to 0) each time the correct period is reached, effectively 
halving the frequency again. This toggling ensures that the signal generated has a 
50 percent duty cycle. That is, the square wave is high and low in equal amounts.

reg [5:0] prescaler = 0; 

reg [31:0] counter = 0;

always @(posedge CLK)

begin

  prescaler <= prescaler + 1;

  if (prescaler == CLK_F / 2 - 1) 

  begin

    prescaler <= 0;

    counter <= counter + 1;

    if (counter == period - 1)

    begin

      counter <= 0;

      tone_out <= ~ tone_out;

    end  

  end  

end

endmodule

The tone_tester Module
The tone_tester module creates three instances of the tone module, each on a dif-
ferent pin and at a different frequency. The period_12khz instance will actually 
produce a frequency of 12.5 kHz rather than 12 kHz.
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module tone_tester(

    input CLK,

    output tone_1khz,

    output tone_100hz,

    output tone_12khz

    );

reg [31:0] period_1khz = 1000;

reg [31:0] period_100hz = 10000;

reg [31:0] period_12khz = 80;

tone #(32) t1(.CLK (CLK), .period (period_1khz),  

                          .tone_out (tone_1khz));

tone #(32) t2(.CLK (CLK), .period (period_100hz),  

                          .tone_out (tone_100hz));

tone #(32) t3(.CLK (CLK), .period (period_12khz),  

                          .tone_out (tone_12khz));

endmodule

Testing
Figure 8-2 identifies the GPIO pins used as outputs on the Papilio One board, and 
Figure 8-3 shows the same on the Mojo.

The pins used on the Elbert 2 are

•	 1-kHz P31 (connector P1, pin 1)

•	 100-Hz P32 (connector P1, pin 2)

•	 12.5-kHz P28 (connector P1, pin 3)

You will find more about the GPIO pin allocations in the Appendices B to D. 
Connecting a dual-channel scope to the pins shows the waveforms of Figure 8-4.

Playing an Audio File
This project uses a FPGA to play recorded audio data back through an amplifier. 
It introduces some useful new techniques including the use of random access 
memory (RAM) and how to load it with a set of data during synthesis.

You can find the project directory for this module in the downloads for this 
book in the directory ch08_wav_player. See Chapter 2 for instructions on down-
loading the code for this book.
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Figure 8-2 Generating multiple frequencies on the Papilio One. 

Figure 8-3 Generating multiple frequencies on the Mojo.
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Figure 8-4 Oscilloscope trace for 1 kHz (top) and 100 Hz (bottom).

Audio Files
There are many types of audio files, and most use clever compression algorithms 
to reduce the file size as much as possible with as little loss of quality as possible. 
At its simplest, an audio file will just contain a long series of numbers, each num-
ber representing the amplitude (think voltage) at an instant in time. This format is 
called a raw format because nothing fancy has been done to the numbers. Figure 
8-5 shows the data for a sample of me saying the word one. 

The numeric values at each sample point are held in a single byte (8 bits), giv-
ing a range of numbers between 0 and 255. The sound was sampled at 8 kHz, so 
the approximately 3,800 samples represent less than half a second of audio. 

A software tool like Audacity (www.audacityteam.org/) will allow you to record 
your own audio file or import an audio file from almost any format and then save 
the result as raw data. Later on, in the section “Preparing Your Own Sounds,” you 
will learn how to use Audacity and a small Python script to convert the raw sound 
file into a format suitable for importing into a FPGA.
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Figure 8-5 The waveform for the “one” audio sample.

RAM
The sound to be played is going to be held in memory (RAM) on the FPGA. All 
the FPGAs used on the three example boards (in fact, most FPGAs) have a dedi-
cated area of the FPGA chip that is used for RAM. When ISE spots a reg declara-
tion in your Verilog that looks like memory, it uses this specialized block rather 
than general-purpose cells. None of the FPGAs used in this book have much 
RAM. The Elbert 2 has just 54 kbits, the Papilio One has 74 kbits, and the Mojo 
has most with 576 kbits. This means that even on the Mojo, with a sample rate of 
8 kHz, you will only be able to store 6 or 7 seconds of audio. On the Elbert, you 
will only have about half a second. Halve the sample rate, and you will get double 
the time, but with a loss of quality.

The RAM will have a number of input address lines and output data lines. You 
set a number in binary on the address lines to specify the memory byte to which 
you want access. You can then read or write the currently selected byte. Change 
the address, and you get access to a different byte of data. Although the whole 
point of RAM is that you can both read from and write to it, in this project the 
RAM is filled with initial contents from a file during synthesis and then left 
unchanged. 
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The wav_player Module
To play the sound file, a counter is used to step through each address in turn. The 
value at each location is then output using PWM. The module has inputs of CLK 
and switch_play, which is used to trigger the sound file to be played when a 
switch is pressed:

module wav_player(

    input CLK,

    input switch_play,

    output reg audio_out

    );

Next, there is a local parameter to hold the number of bytes of data contained 
in the audio file. The format for specifying the memory looks like a regular reg 
declaration except that as well as specifying the size of each element of the data 
(7:0) the quantity of such memory locations is also specified (MEM_SIZE-1:0) 
after the name of the memory (memory):

localparam MEM_SIZE = 19783; 

reg [7:0] memory[MEM_SIZE-1:0];

To load up the memory with data, a special command $readmemh (“read mem-
ory hex”) is used contained in an initial block. The $readmemh command 
takes two parameters, the name of the data file to be loaded into the memory and 
the name given to the memory. This loading happens during synthesis:

initial begin

  $readmemh("01_03_b19783.txt", memory);

end

The file format for $readmemh is hexadecimal numbers, one per line. In the 
section “Preparing Your Own Sounds,” you will learn how to create such a file. 
The switch is linked to a debouncer in the usual way:

wire s_start;

debouncer d1(.CLK (CLK), .switch_input (switch_play),  

             .trans_up (s_start));

To control the playing of the sound file, a register play is used. This acts as a 
flip-flop to turn the pulses to the address counter on and off. The prescaler 
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counter is used to decrease the clock frequency of the board to match the sample 
rate of the board. The 8-bit counter is used as the PWM counter, and value is 
used for the contents of the memory currently referred to by address.

Figure 8-6 shows how all these things relate to each other. It also gives a clue as 
to what the Verilog is likely to be synthesized to.

reg play = 0;

reg [3:0] prescaler; 

reg [7:0] counter;

reg [19:0] address;

reg [7:0] value;

The always block increments the prescaler counter only if play is 1. If you 
skip down to the end of the always block, you will see that this happens when the 
“Start” button is pressed. Assuming that the button has been pressed, the prescaler 
does its job of dividing the clock frequency from the 50-MHz input clock (this is the 
Mojo version) down to 2 MHz. Then counter is incremented, and the data from 
the current memory location are latched into value. The value of the current mem-
ory location is then compared with counter and audio_out set appropriately.

Figure 8-6 Schematic for the sound file player.
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This results in a PWM output with pulses that are longer for a high  
amplitude and shorter for a low amplitude. When the value of address reaches 
MEMORY_SIZE, play is reset to stop the prescaler clocking and prevent any further 
audio playing until the button is pressed again:

always @(posedge CLK)

begin

  if (play)

  begin

    prescaler <= prescaler + 1;

    if (prescaler == 15)  // 8kHz x 256 steps = 2.048 MHz

    begin

      prescaler <= 0;

      counter <= counter + 1;

      value <= memory[address];

      audio_out <= (value > counter);

      if (counter == 255)

      begin

        address <= address + 1;

        if (address == MEM_SIZE)

        begin

          play <= 0;

          address <= 0;

        end    

      end  

    end

  end

  if (s_start)

  begin

    play <= 1;

  end  

end

endmodule

Testing
The Elbert 2 and Papilio (with LogicStart MegaWing) will both play the audio 
through their audio sockets. To play audio from the Mojo and IO Shield, connect 
it up as you did in Figure 8-1. When you press the “Start” button, you should hear 
the sound file being played.
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Preparing Your Own Sounds
Preparing your own sound file is pretty straightforward. The main problem is 
keeping it short enough to fit into RAM. Start by installing and running Audacity 
(www.audacityteam.org/). Audacity is available for Windows, Mac, and Linux and 
is free. Start a new project, and make sure that the “Project Rate” is set to 8 kHz 
and that the recording is set to mono (Figure 8-7). Make a short recording by 
clicking on the circular red “Record” button.

When you have finished recording, press the “Stop” button (yellow square), 
and you will see the waveform of what you have recorded. If the waveform is a 
little flat, you can either record it again but talk louder or amplify the signal digi-
tally by selecting the Effect  Ampilfy … option on the menu. You will also prob-
ably want to trim off any silence from the start and end of the recording, which 
you can do by selecting the part of the waveform that you want to remove and 
then pressing the delete key.

You now need to export the sound file in a very particular format, so select the 
menu option File  Export Audio.… You need to select a file type of “Other 
Uncompressed” and then in the header field select “RAW” (headerless) and in the 
encoding field select “Unsigned 8-bit PCM.” Then hit “Save” to create the file 
(Figure 8-8).

Figure 8-7 Making a recording in Audacity.
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Figure 8-8 Exporting the raw sound file.

The file you have just created is binary, and to put it into a form suitable for the 
$readmemh file, it needs to be converted into a text file with two-digit hexadeci-
mal strings, one per line like the following example:

82

89

8e

89

To do this conversion, you can use the Python script that I have created for this 
purpose, which you will find with the downloads for this book in the folder 
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“utilities/audio.” Before you can run this script, you will need to install Python, 
following the instructions at https://wiki.python.org/moin/BeginnersGuide/
Download. The program will work in Python 2 or Python 3.

Put the sound file you exported into the same folder as the script (“utilities/
audio”), and then run the program from the command line using the command:

$ python raw2hex.py 01_05.aiff 01_05.txt

Read (bytes)36130

The first parameter (in this case, 01_05.aiff) is the name of the sound file to 
convert, and the second parameter (01_05.txt) is the output text file. The utility 
helpfully tells you the size of the data generated so that you can use it to set  
MEM_SIZE in wav_player before you build the project.

Summary
Generating sounds is all about dividing the clock signal and then generating pulses 
to produce a sound. In Chapter 9 you will also be generating pulses, but this time 
for video signals.
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9
Video

Most of modern electronics, whether its generating digital sounds, controlling 
power to a LED, or positioning a servomotor, seems to be concerned with gen-
erating pulses. This is also true for the generation of video signals.

Both the Elbert 2 and the Papilio LogicStart have GPIO connectors and a little 
extra electronics attached to them for generating VGA signals for use with a com-
puter monitor or TV. The projects in this chapter are just for the Elbert 2 and 
Papilio, but if you have VGA hardware for your Mojo, you should not find it hard 
to adjust the timings of the code to work with that board too.

VGA
Video Graphics Array (VGA) is an old standard for video connections that has 
been around since the early days of the PC. It’s relatively easy to generate the 
pulses for it, and most monitors and TVs still have a VGA connection. VGA sig-
nals are made up of frames. A frame is one complete set of visible pixels plus some 
invisible timing signals that we will address shortly. The screen is refreshed many 
times a second, for the examples in this chapter, in the case of the Elbert 2, 60 
frames a second and for the Papilio 73 frames a second. This is also often called 
the refresh frequency expressed in hertz. Figure 9-1 shows the VGA hardware for 
the Papilio LogicStart MegaWing.

If you look at the VGA connector (labeled “VGA” in Figure 9-1), you can see 
that apart from GND, there are just five connections that are active. These are 
RED, GREEN, BLUE, VSYNC, and HSYNC.
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Figure 9-1 Papilio LogicStart MegaWing VGA schematic.

The three color signals are analog. That is, the level of each of the signals con-
trols the intensity of that color on the screen. The RED and GREEN channels each 
use three digital outputs with a simple resistor-based digital-to-analog converter 
that produces an output intensity in eight steps. The BLUE signal uses just two 
digital outputs so that it has four possible levels. BLUE loses out so that the entire 
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RGB color can be specified in a single byte of 8 bits. When, say, the RED and 
GREEN are both at their highest level for a particular pixel, they will combine by 
the process of additive color mixing (https://en.wikipedia.org/wiki/Additive_
color) to produce yellow.

The HSYNC signal is a negative-going pulse that marks the end of each line, 
and the VSYNC signal marks the end of the whole frame. The timings of HSYNC 
and VSYNC have some extra conditions of how long the pulses are and when they 
happen, although many monitors are quite tolerant of deviations from the stan-
dard timing. Figure 9-2 shows some of the naming conventions around the pulse 
generation, with time flowing left to right and top to bottom.

As well as the RED, GREEN, and BLUE signals that control the color of each of 
the 640 × 480 pixels, a large portion of the “frame” of signals will not correspond 
to visible pixels but rather to timing signals. To visualize this, it is useful to think 
of each frame as being bigger than just its visible part in order to contain the extra 
timing signals needed. That is, there needs to be a horizontal sync (HS) pulse 
before the start of each full line of pixels and after all the lines have been displayed, 
and there needs to be a vertical sync (VS) pulse to tell the monitor that it should 
start displaying a new frame.

Figure 9-2 VGA signals.
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So, before the color intensities are written for a particular row of pixels, the HS 
signal must be generated. This is a negative-going pulse of a fixed duration. There 
must be a pause called the horizontal front porch before the HS pulse and then a 
longer pause afterwards (the horizontal back porch) before the color pulses start 
to cause the pixels to be displayed. The whole period of the horizontal front porch, 
HS, and the horizontal back porch is termed the horizontal blanking period, and 
during this period, RED, GREEN, and BLUE signals should all be set to zero. 

A similar thing happens with the vertical sync (VS) signal after the full 480 
lines of the video have been displayed. This is also surrounded by front and back 
porches and the whole period termed the vertical blanking period. The RED, 
GREEN, and BLUE signals also need to be zero during this period.

During the visible portion of the scan, the RED, GREEN, and BLUE signals do 
not need to be sent as separate pulses unless the color changes from one pixel to the 
next. To set the entire screen red, you just need to keep the three RED control pins 
high all the time apart from the porches. This means that even though nominally 
there are 640 pixels across each line, the line will go red whenever the RED signal is 
high and will stop being red when it goes low again. Physically, the display will be 
made up of actual pixels at a certain resolution, so matching the ON/OFF times of 
the colors to the real pixels on the screen surface will produce the best results.

VGA Timings
There are many different options for scan rates and resolutions for VGA, but the 
two that you will be using in this chapter are listed in Table 9-1. You can find a 
more complete list of timings at http://web.mit.edu/6.111/www/s2004/NEWKIT/
vga.shtml.

Looking at the first row for 640 × 480 pixels at 73 Hz, the first column tells us 
that the pixel clock needs to be 31.5 MHz. This means that to display the whole 
frame and also generate the sync signals, a 31.5-MHz clock is needed. During the 
visible part of the frame, one pixel will be drawn for each tick of the clock. From 
now on, our main unit of time will be a tick, 1 tick being the time period to display 
a single pixel. This relates to a period of 31.74 ns per pixel (1/31.6 MHz). The 
horizontal front porch is specified to be 24 ticks, the sync signal needs to go low 
for 40 ticks, and the back porch needs to be 128 ticks.
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640 × 480 73-Hz refresh
(Papilio)

640 × 48060-Hz refresh
(Elbert 2)

Pixel Clock (Actual) 31.5 MHz 
(32 MHz)

25 MHz
(24 MHz)

Pixel Tick 31.74 ns 40 ns

Horizontal Front Porch 24 ticks 16 ticks

Horizontal Sync 40 ticks 96 ticks

Horizontal  Back Porch 128 ticks 48 ticks

Horizontal Visible 640 ticks 640 ticks

Vertical Front Porch 9 lines 11 lines

Vertical Sync 3 lines 2 lines

Vertical Back Porch 28 lines 31 lines

Table 9-1 VGA Timings

When it comes to the vertical part of the signal (which is much longer than the 
horizontal sync signals), it makes sense to use whole lines as the unit of time, a line 
being the time to generate the horizontal timing signal (porches + HS). So, the 
vertical front porch is specified as 9 lines, the sync pulse 3 lines, and the back 
porch 28 lines. These periods are all quite long and reflect the fact that the stan-
dard was defined in the days when monitors used cathode-ray tubes (CRTs), and 
they needed the time to re-aim the electron beam.

The Papilio has a clock frequency of 32 MHz, which is close enough to 31.5 
MHz that most modern monitors will be able to adjust themselves to the slightly 
higher frequency. Hence for the Papilio, you will use the 73-Hz settings. The 
Elbert 2 has a 12-MHz signal. At first sight, this would seem to rule out its use in 
generating VGA signals of any kind. However, if we are prepared to make each 
pixel 2 ticks wide rather than 1, then we can use the 60-Hz VGA standard with an 
equivalent clock speed of 24 MHz.

Drawing Rectangles
One of the simplest things you can do with a VGA project is to display a few col-
ored rectangles on the screen, as shown in Figure 9-3. You can find this project in 
the downloads for this book (see Chapter 2). The project is called “09_vga_basic.”
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Figure 9-3 Colored rectangles on the screen.

A VGA Module
To make our VGA experiments as modular as possible, you will start by creating 
a module (vga.v) that generates the sync signals. This section starts with the 
Papilio, and we will look at the Elbert later.

The module has a single input (CLK) and outputs for HS (HS) and VS (VS) that 
will be wired to the VGA socket. The module also has 10-bit outputs for the cur-
rent x and y coordinates. These will also include nonvisible areas of the screen, so 
the output blank is also provided, and blank will be HIGH if the current scan 
position is in an area of the frame that is not visible.

The x output will be incremented every pixel tick until the line is complete and 
then reset. The y output will increment as the signal for each line is completed:

module vga(

    input CLK,  // Papilio 32MHz

    output HS, VS,

    output [9:0] x,

    output reg [9:0] y,

    output blank

    );
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The 10-bit register xc is used to count the x position but including the invisible 
areas, whereas x is the actual pixel location, so you can use x and y to refer to the 
actual screen coordinates as you would expect to find them. No equivalent of xc 
for the y coordinates is needed because the VS signal appears after all the visible 
lines have been displayed:

reg [9:0] xc;

The following section of assignment blocks is used to generate the HS, VS, 
blank, and x signals based on the scan position of xc and y. You will see how xc 
and y count when we get to the always block.

If xc is smaller than 192 (the horizontal blanking period) or greater than 832 
pixels of width (visible pixels + horizontal blanking period) or y is more than 479 
(after the last visible pixel), then the blank output will be high. Similarly, the HS 
signal is calculated using the position of xc. If xc is between 24 and 64 pixels, then 
it’s the right time for HS to be active. Note the use of ~ (not) to invert the signal 
because HS is active low. The VS signal is generated in the same way.

The x output is calculated as being xc minus 192. The special : ? syntax is  
shorthand for an if statement. The condition comes first (xc < 192), and if  
that is true, the value after the question mark (?)  is used (0); otherwise, the value 
xc – 192 is used. This prevents the value of x ever wrapping round, which would 
happen if the result of the subtraction were to be negative.

// Horizontal 640 + HFP 24 + HS 40 + HBP 128 = 832 pixel ticks

// Vertical, 480 + VFP 9 lines + VS 3 lines + VBP 28 lines 

assign blank = ((xc < 192) | (xc > 832) | (y > 479));

assign HS = ~ ((xc > 23) & (xc < 65));

assign VS = ~ ((y > 489) & (y < 493));

assign x = ((xc < 192)?0:(xc - 192));

The always block follows the pattern we have seen many times, where two 
counters (xc and y) are used to keep track of the current scan position of the 
frame including the invisible parts:

always @(posedge CLK)

begin

  if (xc == 832)

  begin

    xc <= 0;

    y <= y + 1;
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  end

  else begin

    xc <= xc + 1;

  end

  if (y == 520)

  begin

    y <= 0; 

  end

end

endmodule

The following module (vga_basic.v) tests out the vga module to draw the rect-
angles of Figure 9-3. The inputs and outputs to this top-level module connect to 
the NETs defined in the UCF for the project.

module vga_basic(

    input CLK,

    output HS,

    output VS,

    output [2:0] RED,

    output [2:0] GREEN,

    output [1:0] BLUE

    );

Two 10-bit wires x and y are linked to the instance of vga. Note that in this 
example the “blank” output of vga is not needed.

wire [9:0] x, y;

vga v(.CLK (CLK), .HS (HS), .VS (VS), .x (x), .y (y));

This is where things might suddenly seem backwards from the normal 
approach to drawing things, where the software programmer would want to set 
the color at a particular x and y pixel on the screen. What happens here is that 
instead, the logic for determining the magnitude of each color is expressed in 
terms of x and y. So for a red square from 1 (1 to 299), 299 can be drawn by 
specifying that red should be ON if x is greater than 0 and x is less than 300 and y 
is greater than 0 and y is less than 300. The ?: syntax is used to ensure that RED is 
set to 7 for maximum red brightness; otherwise, it would be 1. The GREEN and 
BLUE rectangles are generated in a similar way:
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assign RED = ((x > 0) & (x < 300) & (y > 0) & (y < 300))?7:0;

assign GREEN = ((x > 200) & (x < 400) & (y > 150) & (y < 350)?7:0);

assign BLUE = ((x > 300) & (x < 600) & (y > 180) & (y < 480))?3:0;

endmodule

VGA and the Elbert 2
The 12-MHz Elbert 2 version of vga.v is as follows:

module vga(

    input CLK,  // Papilio 32MHz

    output HS, VS,

    output [9:0] x,

    output reg [9:0] y,

    output blank

    );

reg [9:0] xc;
 

// Horizontal 640 + fp 16 + HS 96 + bp 48 = 800 pixel clocks

// Vertical, 480 + fp 11 lines + VS 2 lines + bp 31 lines = 524 lines

assign blank = ((xc < 160) | (xc > 800) | (y > 479));

assign HS = ~ ((xc > 16) & (xc < 112));

assign VS = ~ ((y > 491) & (y < 494));

assign x = ((xc < 160)?0:(xc - 160));

always @(posedge CLK)

begin

  if (xc == 800)

  begin

    xc <= 0;

    y <= y + 1;

  end

  else begin

    xc <= xc + 2;

  end

  if (y == 524)

  begin

    y <= 0; 

  end

end

endmodule
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This version takes the timings from the second row of Table 9-1 but is other-
wise much the same as the Papilio version. The other difference (highlighted in 
bold) is that xc is increased by 2 each tick rather than 1. This is what gives us the 
apparent clock speed of 24 MHz by halving the horizontal pixel resolution.

Making Things Move
Figure 9-4 shows a second example. This time, there is a white rectangle drawn 
around the edge of the screen and a green square that can be moved about the 
screen using the push buttons on the Elbert 2 or the joystick on the Papilio One 
and LogicStart.

The vga module is unchanged from the preceding example. It is just the top-
level module (vga_game.v in the project “09_vga_game”) that is different. The 
module has some extra inputs for the four push buttons:
module vga_game(

    input CLK,

    input up_switch,

    input dn_switch,

    input left_switch,

    input right_switch,

Figure 9-4 Making things move.
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    output HS,

    output VS,

    output [2:0] RED,

    output [2:0] GREEN,

    output [1:0] BLUE

    );

This time, in addition to the x and y coordinates, the “blank” signal will be needed 
to blank out RED, GREEN, and BLUE when not over the visible pixel area. A prescaler 
is also defined that will slow things down for moving the object about:

wire [9:0] x, y;

wire blank;

reg [15:0] prescaler;

vga v(.CLK (CLK), .HS (HS), .VS (VS), .x (x), .y (y), .blank (blank));

The position of the object is held in two 10-bit registers, o_x and o_y. The wire 
“object” 1 or 0 is assigned to the static expression that determines that x and y are 
inside a square set by the top-right corner o_x, o_y and extending 30 pixels in 
width and height:

reg [9:0] o_x = 320;

reg [9:0] o_y = 240;

wire object = x>o_x & x<o_x+30 & y>o_y & y<o_y+30;

A border is also defined in a similar manner. The value of border will be 1 if x 
and y are at a place where the border should appear:

wire border = (x>0 & x<10) | (x>630 & x<640) | (y>0 & y<10) |  

              (y>470 & y<480);

The values for RED and BLUE are just determined by the border. The value of 
GREEN is determined by OR-ing together the things contributing to whether 
GREEN should be ON, that is, whether x and y are in border or are in object:

assign RED = (border & ~ blank)?7:0;

assign GREEN = ((border | object) & ~ blank)?7:0;

assign BLUE = (border & ~ blank)?3:0;

The always block uses a prescaler to drop the speed of movement to some-
thing slow enough to control and then just uses the button presses to adjust the 
coordinates of the objects o_x and o_y:
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always @(posedge CLK)
begin
  prescaler <= prescaler + 1;
  if (prescaler == 0)
  begin
    if (~ up_switch)
    begin
      o_y <= o_y - 1;
    end
    if (~ dn_switch)
    begin
      o_y <= o_y + 1;
    end
    if (~ left_switch)
    begin
      o_x <= o_x - 1;
    end

    if (~ right_switch)

    begin

      o_x <= o_x + 1;

    end

  end

end

endmodule

A Memory-Mapped Display
A more conventional approach to video display is to memory map it, that is, to use 
a memory to contain the color of each pixel, and then separate hardware can gen-
erate the VGA signals from the memory.

Unfortunately, neither the Elbert 2 or the Papilio have enough memory to allo-
cate a whole byte to all 640 × 480 = 307,200 pixels. But what we can do is to map 
the memory to bigger (8 × 8) pixels. This will reduce the effective resolution of the 
display to 80 × 60. You can also load up the memory with an image like you did in 
the audio file player so that you can display an image on the screen such as the one 
shown in Figure 9-5.
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Figure 9-5 Displaying an image using memory-mapped VGA output.

The vga module is unchanged. You will find the top-level module for memory 
mapping VGA in the file vga_mem.v in the project “09_vga_mem.” This starts 
with the usual imports to connect things up to hardware with the UCF file:

module vga_mem(

    input CLK,

    output HS,

    output VS,

    output [2:0] RED,

    output [2:0] GREEN,

    output [1:0] BLUE

    );

wire [9:0] x, y;

The memory is 4800 × 8 bits to accommodate the resolution of 80 × 60. The 
wire mem_index is used to address the memory and color to reference the color at 
the current pixel position:

reg [7:0] mem[4799:0]; // 80 x 60 (8x8 pixels on 640x480)

wire [12:0] mem_index;

wire [7:0] color;
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The memory is loaded using $readmemh in the same way as the audio file. 
Later in this section, the process of converting any image into a suitable format 
will be explained.

initial begin

  $readmemh("flag.txt", mem);

end

vga v(.CLK (CLK), .HS (HS), .VS (VS), .x (cx), .y (y),  

      .blank (blank));

To find the right address in the memory given values of x and y (small pixels), 
the value of y (0–439) is divided by 8. Verilog can synthesize division hardware, 
but only for powers of two, because this can be done easily by a process called bit 
shifting. This value is then multiplied by 80 because there are now 80 pixels across, 
and the final result is found by adding x divided by 8 to mem_index.

FPGAs do have multiplication hardware, and you do not have to restrict your-
self to powers of 2. You may wonder why you can’t just multiply y by 10 rather 
than first dividing it by 8 and then multiplying it by 80. The reason why is that you 
need to lose what would become the fractional part of dividing y by 8 before then 
scaling it up to the right row.

The RED, GREEN, and BLUE values are then set from the appropriate bits of 
“color,” with “blank” being used to make sure the colors are not active when the 
display should be blanked for not being in a visible region:

assign mem_index = (y / 8) * 80 + x / 8; // divide y first to lose LSBs

assign color = mem[mem_index];

assign RED = (blank?0:color[7:5]);

assign GREEN = (blank?0:color[4:2]);

assign BLUE = (blank?0:color[1:0]);

endmodule

Preparing an Image
In the downloads for this book you will find a folder called “/utilities/video,” and 
in there you will find another Python utility called “image2hex.py” for importing 
an image, resizing it to 80 × 60, and converting it into a text file suitable for use 
with $readmemh.

09_Ch09.indd   138 8/27/16   9:32 AM



 Chapter 9: Video 139

The utility needs Python to be installed on your computer (see Chapter 8) and 
also requires the Python Image Library (PIL). To install PIL (after Python has 
been installed), run the following command from the command line:

sudo pip install pillow

Like its audio file equivalent, the utility takes two parameters: the file to convert, 
which can be a JPG, GIF, PNG, BMP, and so on, and the name of the output file to 
be created. The file created should always be the same size because the script 
automatically resizes the image to 80 × 60 pixels.

Summary
This chapter will get you started on the road to generating video from your FPGA 
board. It’s not too much of a stretch to see how a digital oscilloscope with VGA 
output could be built if the FPGA board has suitable signal-capture hardware 
attached to it. The site FPGA4fun has implemented an entire pong game using 
VGA generated from a FPGA board (www.fpga4fun.com/PongGame.html). 
However, without the use of a processor core on the FPGA, it soon becomes dif-
ficult to implement game play using pure hardware.
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10
What Next

This is an admittedly short book for what is a complex device. I hope that I 
have managed to at least achieve the goal of this book’s subtitle and get you 
started with Verilog.

There is plenty more to look at, and this is just the start of your journey into 
FPGAs. In this chapter, you will see a few other features of ISE and also learn 
about other ways of programming the Mojo and Papilio boards.

Simulation
Development boards such as the Elbert 2, the Mojo, and the Papilio allow you to 
try out your FPGA code for real, but ISE also includes a feature that allows you to 
simulate the behavior of your Verilog in software without actually installing it on 
a FPGA. The process involves creating a test module that sends stimuli to the 
module under test and will then generate simulation results like those shown in 
Figure 10-1.

Under the Hood
Although not especially useful, if you are curious about how the synthesis of 
Verilog code works, you can take a look at its intermediate results. If you select 
your top-level module and then unfold some of the options in the “Processes” area 
(bottom-left quarter of Figure 10-2), you will see an option called “View 
Technology Schematic.” Click on this, and you will get a nice symbolic representa-
tion of your top-level module as a block with inputs and outputs. However, if you 
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Figure 10-1 Simulation results for a counter.
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click on “View Technology Schematic,” it will open up to show you all the logic 
gates used in your synthesis. Figure 10-2 shows just the top left of this schematic 
for the “tone” project.

Of more use is the “Design Summary.” This tells you just how much of your 
FPGA’s resources are being used. When you run the “Generate Programming File” 
process, you will find that the report will have been added to the documents in the 
editor area, and you can view it just by clicking on the “Design Summary” tab. 
Figure 10-3 shows part of the summary for the “countdown_time” project.

Cores and Soft Processors
There is little point in reinventing the wheel, so within ISE and elsewhere, you will 
find cores that can be downloaded and used in your projects. Some of these cores 
are proprietary and require payment, but there are a growing number of open-
source cores and Verilog available under open-source licenses.

Figure 10-2 The technology schematic for the “tone” project.
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Figure 10-3 The Design Summary–Device Utilization.

Be warned, though, that although there is a plentiful supply of open-source 
Verilog code available to use in your projects, often it is not well documented and 
lacks examples of using the module, so you will generally have to do quite a lot of 
work understanding how to use the module.

Both the Papilio and the Mojo have their own integrated development envir-
ronments (IDEs) that you can use as alternatives to ISE. In both cases, they are 
simpler and easier to use and offer some advantages if you just want to work on 
one of those boards. However, both also require you to install ISE, which they use 
transparently to actually do the synthesis.

More on the Papilio
The Papilio IDE is based on the IDE for the popular microcontroller board Arduino 
and is called the Papilio Design Lab. Incidentally, the female header connections of 
the Papilio One are also compatible with plug-in Arduino shields. The Papilio 
Design Lab (Figure 10-4) allows you to set up the FPGA on your Papilio One to 
include a soft processor that is Arduino compatible called the ZPUino. You can then 
add extra components to FPGA design (e.g., VGA output) and then program the 
ZPUino soft processor as if it were a real processor all from within the Papilio IDE. 
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Figure 10-4 Papilio Design Lab.

There are lots of predefined hardware configurations (circuits) whose .bit files 
can just be sent to the FPGA board before its ZPUino is programmed with 
Arduino C. Creating your own circuits is more complex, requiring the use of ISE.
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More on the Mojo
The Mojo’s IDE (Figure 10-5) is called simply the Mojo IDE, and it encourages the 
use of the company’s HDL called Lucid. This is very similar to Verilog with mostly 
cosmetic changes such as using { and } in place of begin and end.

The IDE is easy to use and includes a collection of components that can be 
added to your design like cores. The Mojo actually has an Arduino-compatible 
microcontroller attached to it that can provide analog inputs and communication 
features.

Summary
This book should have started you on your journey with FPGAs or at least shown 
you their strengths and weaknesses. You will find many resources on the Internet 
that stir the imagination for that first project to make. As always when learning 
something new, take small steps, and try a few simple projects before you set out 
to make something truly ambitious.

Figure 10-5 The Mojo IDE.
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Appendix A will point you in the direction of Internet resources to help you in 
this quest as well as listing some alternatives to the boards used here and places to 
buy boards and other kit. Appendices B, C, and D provide the detailed informa-
tion you need about the hardware of the three boards and their interface shields 
in a consistant structure for quick reference.
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A
Resources

Buying FPGA Boards
The best starting point for obtaining one of the FPGA boards used in this book is 
the manufacturers’ websites:

•	 Elbert	2:	http://numato.com/.	You can buy from Numato’s website, but 
you can also find the Elbert 2 widely available on Amazon sites around the 
world.

•	 Mojo:	https://embeddedmicro.com. Also available from Adafruit and 
Sparkfun.

•	 Papilio:	http://papilio.cc/. Also available from Sparkfun.

Components
This book is mostly about software, so there are not many components to buy. 
Each project that needs parts includes a parts list. Some other useful suppliers of 
components that ship worldwide include

•	 Sparkfun: www.sparkfun.com

•	 Adafruit: www.adafruit.com

•	 Mouser: www.mouser.com

•	 Digikey: www.digikey.com

•	 Newark: www.newark.com
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In the United Kingdom, there are

•	 Maplins: www.maplins.com

•	 CPC: http://cpc.farnell.com/

Other FPGA Boards
Many FPGA boards are available for the Xilinx FPGAs that use ISE as well as from 
manufacturers that have their own tools. In fact, FPGA manufacturers will often 
also sell “evaluation” boards. These vary considerably in price and are aimed more 
at professionals rather than “makers.”

One intereresting project that aims to get away from the bloated development 
environments of the FPGA manufacturers is icoBOARD (Figure A-1). This board 
is being developed as a companion board to the Raspberry Pi and uses an open-
source toolchain to synthesize the design. At the time of this writing, the board is 
in its beta-test phase.

Figure A-1 The icoBOARD.
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Figure A-2 The Mimas V2 Spartan 6 board.

One of the best-value higher-powered FPGA boards is the Numato Labs’ 
Mimas V2 (Figure A-2). This is essentially an Elbert 2 but with a Spartan 6 FPGA 
like the Mojo. The interface hardware (switches, VGA, and audio) are much the 
same as those on the Elbert 2.

Web Resources
In addition to the manufacturers’ websites mentioned earlier, here are some 
resources that you might find useful:

•	 fpga4fun.com:	Some great tutorials and Verilog code for all sorts of 
projects and activities 

•	 opencores.org: A repository of open-source FPGA projects

•	 www.xilinx.com/training/fpga-tutorials.htm: Tutorials for Xilinx FPGAs 
using ISE (mostly advanced)

•	 http://numato.com/learning-fpga-and-verilog-a-beginners-guide	
-part-1-introduction: A nice FPGA tutorial from Numato Labs

11_Apps.indd   151 8/27/16   9:33 AM



11_Apps.indd   152 8/27/16   9:33 AM

This page intentionally left blank 



153

B
Elbert 2 Reference

ISE New Project Settings
When creating a new project in ISE using the New Project Wizard, you should use 
the settings in Table B-1.

Setting Value

Evaluation development board None specified

Product category All

Family Spartan3A and Spartan3AN

Device XC3S50A

Package TQ144

Speed –4

Table B-1 Elbert 2 Project Settings

Prototype Net Mapping
The Elbert 2’s built-in switches, LEDs, and other connectors are summarized in the 
following sections. All figures are reproduced with permission from Numato Labs.

LEDs
The Elbert 2’s individual LEDs are mapped to FPGA pins as shown in Table B-2. 
The LEDs are connected through series resistors to ground, so a high signal on a 
LED pin will light the LED.
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IO	Shield	Name	(NET) FPGA	Pin	(LOC)

D1 P55

D2 P54

D3 P51

D4 P50

D5 P49

D6 P48

D7 P47

D8 P46

Table B-2 The Elbert 2 LED Pin Locations

Three-Digit Display
Figure B-1 shows the schemtic for the Elbert 2’s seven-segment LED display. The 
three common anodes of the display are switched by PNP transistors connected 
to FPGA pins P120, P121, and P124. The digit selection is inverted, so a low at 
P120 will enable the digit S3.

Figure B-1 Elbert 2 LED display schematic.
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The individual LED segments are controlled by the pins listed in Table B-3.

Segment FPGA	Pin	(LOC)

a P117

b P116

c P115

d P113

e P112

f P111

g P110

DP P114

Table B-3 Elbert 2 LED Segment Mapping

DIP Slide Switches
The Elbert 2’s slide switches are mapped to FPGA pins as shown in Table B-4. All 
the slide switches switch to ground when in the ON position.

Switch FPGA	Pin	(LOC)

1 P58

2 P59

3 P60

4 P63

5 P64

6 P68

7 P69

8 P70

Table B-4 Elbert 2 Slide-Switch Mapping

Push Switches
The Elbert 2’s push switches are mapped to FPGA pins as shown in Table B-5. 
Each switch is switched to ground, so a pressed switch will make its FPGA pin 
LOW. There are no pull-up resistors; the inputs are floating.
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Switch FPGA	Pin	(LOC)

SW1 (top left) P80

SW2 P79

SW3 P78

SW4 P77

SW5 P76

SW6 P75

Table B-5 Elbert 2 Slide-Switch Mapping

VGA
Figure B-2 shows the VGA connector pin mapping. The three channel outputs 
use a resistor-based digital-to-analog converter (DAC). This provides 3 bits for 
the red and green channels and 2 bits for the blue channel.

Figure B-2 Elbert VGA connector mapping.
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Audio and Micro-SD
The Elbert has a 3.5-mm audio socket that can be used to connect the Elbert to an 
external amplifier. Figure B-3 shows the stereo audio and micro-SD pin mapping. 
The audio output does not have a low-pass filter.

Figure B-3 Elbert audio socket and SD card.
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GPIO Pins
The following GPIO pins are availble from four headers that are confusingly 
labeled P1, P6, P2, and P4. Each GPIO pin is 3.3-V logic capable of sourcing or 
sinking 24 mA.

Header P1
Header	Pin	(Physical	Location) FPGA	Pin	(LOC)	or	Other

1 P31

2 P32

3 P28

4 P30

5 P27

6 P29

7 P24

8 P25

9 GND

10 GND

11 VCC

12 VCC

Header P6
Header	Pin	(Physical	Location) FPGA	Pin	(LOC)	or	Other

1 P19

2 P21

3 P18

4 P20

5 P15

6 P16

7 P12

8 P13

9 GND

10 GND

11 VCC

12 VCC
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Header P2
Header	Pin	(Physical	Location) FPGA	Pin	(LOC)	or	Other

1 P10

2 P11

3 P7

4 P8

5 P3

6 P5

7 P4

8 P6

9 GND

10 GND

11 VCC

12 VCC

Header P4
Header	Pin	(Physical	Location) FPGA	Pin	(LOC)	or	Other

1 P141

2 P143

3 P138

4 P139

5 P134

6 P135

7 P130

8 P132

9 GND

10 GND

11 VCC

12 VCC

Clock
The Elbert 2 has a 12-MHz clock on pin P129.
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C
Mojo Reference

ISE New Project Settings
When creating a new project in ISE using the New Project Wizard, you should use 
the settings in Table C-1.

Setting Value

Evaluation development board None specified

Product category All

Family Spartan6

Device XC6SLX9

Package TQG144

Speed –2

Table C-1 ISE Settings for the Mojo

NET Mapping (IO Shield)
The following subsections detail the connections between the FPGA’s GPIO pins 
and the peripherals on the IO Shield.

LEDs
The IO Shield’s individual LEDs across the center of the board are mapped to 
FPGA pins as shown in Table C-2. The LEDs are connected through series resis-
tors to ground, so a HIGH signal on a LED pin will light the LED.
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IO	Shield	Name	(NET) FPGA	Pin	(LOC)

LED 0 P97

LED 1 P98

LED 2 P94

LED 3 P95

LED 4 P92

LED 5 P93

LED 6 P87

LED 7 P88

LED 8 P84

LED 9 P85

LED 10 P82

LED 11 P83

LED 12 P80

LED 13 P81

LED 14 P11

LED 15 P14

LED 16 P15

LED 17 P16

LED 18 P17

LED 19 P21

LED 20 P22

LED 21 P23

LED 22 P24

LED 23 P26

Table C-2 Mojo IO Shield LED Pin Mapping

Four-Digit Display
Figure C-1 (reproduced by kind permission of EmbeddedMicro) shows the sec-
tion of the IO Shield’s schematic that deals with the four-digit, seven-segment 
LED display. Each of the four common-anode displays is enabled using the FPGA 
pins P9, P10, P7, and P12 from right to left.

The individual LED segments are controlled by the pins listed in Table C-3.
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Figure C-1 Mojo IO Shield LED display schematic.
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Segment FPGA	Pin	(LOC)
a P5
b P8
c P114
d P143
e P2
f P6
g P1
DP P141

Table C-3 Mojo IO Shield LED Segment Mapping

Slide Switches
The IO Shield’s DIP slide switches are mapped to FPGA pins as shown in Table 
C-4. The slide switches require the GPIO pin to be pulled down.

Switch FPGA	Pin	(LOC)
0 P120
1 P121
2 P118
3 P119
4 P116
5 P117
6 P114
7 P115
8 P112
9 P111
10 P105
11 P104
12 P102
13 P101
14 P100
15 P99
16 P79
17 P78
18 P75
19 P74
20 P67
21 P66
22 P58
23 P57

Table C-4 Mojo IO Shield Slide-Switch Mapping
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Push Buttons
Figure C-2 (reproduced by kind permission of EmbeddedMicro) shows the sec-
tion of the IO Shield’s schematic that deals with the five push buttons.

This might tempt you to think that any inputs will be pulled up to VCC. They 
won’t! The inputs are floating; the resistors are just used to limit current in the 
event that the buttons are pressed while their FPGA pin is set to a low output. 

You can find the full schematic for the IO Shield at https://embeddedmicro 
.com/media/wysiwyg/io/IO_Shield.pdf.

Clock Pin
The Mojo provides a 50-MHz clock on pin P56.

Complete UCF for IO Shield
A UCF for the entire IO Shield can be downloaded from https://embeddedmicro 
.com/media/wysiwyg/io/io.ucf.

11_Apps.indd   165 8/27/16   9:33 AM



166

Figure C-2 Mojo IO Shield push-button schematic.
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D
Papilio One Reference

ISE New Project Settings
When creating a new project in ISE using the New Project Wizard, you should use 
the settings in Table D-1.

Setting Value

Evaluation development board None specified

Product category All

Family Spartan3E

Device XC3S250E or XC3S500Ea

Package VQ100

Speed –4

aIf you have a Papilio One 250, use XC35250E; for a Papilio One 500, use XC35500.

Table D-1 Papilio One Project Settings

LogicStart MegaWing NET Mapping
The Papilio One does not have any built-in interface devices, so in this book it is 
assumed that you will be using a LogicStart MegaWing board fitted on top of your 
Papilio One. You can find the documentation for the MegaWing at http://papilio 
.cc/index.php?n=Papilio.LogicStartMegaWing.
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LEDs
The LogicStart’s individual LEDs are mapped to FPGA pins as shown in Table 
D-2. The LEDs are connected through series resistors to ground, so a high signal 
on a LED pin will light the LED.

Logic	Start	Name	(NET) FPGA	Pin	(LOC)

LED0 P5

LED1 P9

LED2 P10

LED3 P11

LED4 P12

LED5 P15

LED6 P16

LED7 P17

Table D-2 Papilio Logic Start’s LED Pin Locations

Four-Digit Display
The four common anodes of the display are switched by PNP transistors con-
nected to FPGA pins P67, P60, P26, and P18. The digit selection is inverted, so a 
low at P67 will enable the digit 0. The design is very similar to that of the Mojo. So, 
to see a schematic of how the LED display is arranged, see Appendix C. The indi-
vidual LED segments are controlled by the pins listed in Table D-3.

Segment FPGA	Pin	(LOC)

A P57

B P65

C P40

D P53

E P33

F P35

G P62

DP P23

Table D-3 LogicWing LED Segment Mapping
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DIP Slide Switches
The Papilio’s slide switches are mapped to FPGA pins as shown in Table D-4. All 
the slide switches connect to a digital input via a 4.7-kΩ resistor. The switches 
themselves switch the common contact to either GND or 3.3 V. There are there-
fore no pull-up resistors.

Switch FPGA	Pin	(LOC)

0 P91

1 P92

2 P94

3 P95

4 P98

5 P2

6 P3

7 P4

Table D-4 LogicWing Slide-Switch Mapping

Joystick Switches
The LogicWing’s joystick push switches are mapped to FPGA pins as shown in 
Table D-5. Each switch is switched to ground, so a pressed switch will make its 
FPGA pin LOW. There are no pull-up resistors; the inputs are floating.

Switch FPGA	Pin	(LOC)

Select (center push) P22

Up P25

Down P32

Left P34

Right P36

Table D-5 LogicWing Joystick Mapping
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VGA
Figure D-1 shows the VGA connector pin mapping. The three channel outputs 
use a resistor-based digital-to-analog converter (DAC). This provides 3 bits for 
the red and green channels and 2 bits for the blue channel.

Figure D-1 LogicWing VGA connector mapping.
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Audio
The LogicStart MegaWing has a 3.5-mm audio socket that can be used to connect 
the LogicStart MegaWing to an external amplifier. The output is mono using P41, 
but it does have a low-pass filter.

Analog-to-Digital Converter
An ADC128S102 IC provides eight analog inputs using an SPI interface, as shown 
in Figure D-2.

Figure D-2 LogicWing ADC.
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Clock Pin
The Papilio One provides a  32-MHz clock on P89. 

GPIO Pins
Figure D-3 shows the GPIO pin mapping to the Papilio One’s connectors.

Figure D-3 Papilio One connectors.
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numbers
4-bit counter, 44–45

drawing the schematic, 45–46, 47
implementation constraints files, 

46–48
testing the counter, 48
in Verilog, 55–57

A
adding with logic, 7–9
additive color mixing, 127
analog-to-digital converter, 171
AND gates, 3, 28

making an AND gate using NOR 
gates, 5

Audacity, 116, 121
audio

general-purpose tone/frequency 
generator, 111–114

LogicStart MegaWing, 171
output from Mojo, 110–111
simple tone generation, 109–110

audio files, 116–117
playing, 114–123
preparing your own sounds, 

121–123
RAM, 117
testing, 120
wav_player module, 118–120

B
bar, 9
binary, 6–7

binary counters, 12
bistables. See flip-flops
.bit files, 39–40
bit size, specifying, 76–77
bits, defined, 6
buses, 50
button debouncing, 63–-69
bytes, defined, 7

C
case statement, 61, 90
clocks, 10–11, 12

Elbert 2, 159
LogicStart MegaWing, 172
Mojo IO Shield, 165

components, buying, 149–150
cores, 143–144
counter registers, sizing, 65–66
counter_7_seg module, 70, 72, 74–76

D
D flip-flop, 10–11
data selector

adding logic symbols, 33, 34
adding the IO markers, 35
completed schematic, 35
connecting the gates, 33, 34
creating a new project, 28–31
creating a new schematic source, 

31–32
creating a user constraints file, 

36–39
generating the .bit file, 39–40

InDEX

Note: Page numbers in italic refer to figures.
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data selector (continued)
overview, 27–28
programming your board, 41, 42
testing the result, 41–44, 45
in Verilog, 51–55

De Morgan’s law, 5
debouncing modules, 63–69
decoder, 60–63, 64
decoder_7_seg module, 70, 89
development boards. See Elbert 2; 

Mojo; Papilio One
digital watches, 12
DIP slide switches

Elbert 2, 155
LogicStart MegaWing, 169
See also slide switches

display_7_seg module, 70, 72–74, 89
duty cycles, 95

e
Elbert 2

audio and micro-SD pin mapping, 
157

clock, 159
DIP slide switches, 155
GPIO pins, 158–159
installing software, 22–23
ISE new project settings, 153
LEDs, 153–154
overview, 15–16
prototype NET mapping, 153–157
push switches, 155–156
three-digit display, 154–155
and VGA, 133–134
VGA, 156

exclusive OR. See XOR gates

F
field-programmable gate arrays. See 

FPGAs
finite state machines (FSMs), 81

See also state machines

flip-flops, 8
D flip-flop, 10–11
set-reset flip-flop, 9–10

FPGAs
buying FPGA boards, 149
defined, 1
how FPGAs work, 13–15
logical structure of, 14
other FPGA boards, 150–151
See also Elbert 2; Mojo; Papilio One

frames, 125
frequencies, 112
frequency dividers, 12
functions, 91–92

G
GitHub, project files, 24–25
GPIO cells, 13
GPIO pins

Elbert 2, 158–159
LogicStart MegaWing, 172

H
hardware description language.  

See HDL
HDL, 27

See also Verilog
horizontal back porch, 128
horizontal blanking period, 128
horizontal front porch, 128
HSYNC signal, 127

I
IDEs, 144

Mojo, 146
Papilio, 144–145

images, preparing, 138–139
implementation constraints files, 46–48
installing software, 20–24
integrated circuits (ICs), 1
integrated development 

environments. See IDEs
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Integrated Synthesis Environment. 
See ISE

interface boards. See LogicStart 
MegaWing; Mojo IO Shield

inverters. See NOT gates
IO markers, 35
ISE, installing, 20–22

J
joystick switches, LogicStart 

MegaWing, 169

L
least significant digit, 6
LEDs

Elbert 2, 153–154
LogicStart MegaWing, 168
Mojo IO Shield, 161–162

line, 128–130
logic gates, 1–2

adding with, 7–9
AND gates, 3
NAND and NOR gates, 4–5
NOT gates, 2
OR gates, 3
universal gates, 4
XOR gates, 5–6

logic symbols, 33, 34
LogicStart MegaWing, 18–20

analog-to-digital converter, 171
audio, 171
clock pin, 172
DIP slide switches, 169
four-digit display, 168
GPIO pins, 172
joystick switches, 169
LEDs, 168
NET mapping, 167–171
VGA, 170
See also Papilio One

lookup tables. See LUTs
LUTs, 13

M
memory-mapped display, 136–139
metastable outputs, 58
modules, 49, 59

button debouncing, 63–69
importing source code for, 77–78
multiplexed seven-segment 

display and counter, 69–79
PWM, 96–99
servo module, 104–107
seven-segment decoder, 60–63, 64
timer, 86, 88–93
tone module, 112–113
tone_tester module, 113–114
top-level module, 70, 78–79
VGA module, 130–133
wav_player module, 118–120

Mojo
IDE, 146
installing software, 23–24
overview, 16–18

Mojo IO Shield, 16, 17, 18
audio output, 110–111
clock pin, 165
four-digit display, 162–164
ISE new project settings, 161
LEDs, 161–162
NET mapping, 161–165
push buttons, 165, 166
schematic of Mojo IO Shield’s 

display, 71
slide switches, 164
user constraints file, 165

multiplexed seven-segment display 
and counter, 69–79

N
NAND gates, 4–5
nonblocking, 57
NOR gates, 4–5

making an AND gate using NOR 
gates, 5

12_Index.indd   175 8/27/16   9:33 AM



176  Index

NOT gates, 2
number base 10, 6
number base 2, 6
number format, 50

O
OR gates, 3

P
Papilio Design Lab, 144–145
Papilio One, 18–20

IDE, 144–145
installing software, 24
ISE new project settings, 167
See also LogicStart MegaWing

parallel execution, 50
parameters, 104–105
periods, 112
preparing images, 138–139
project files, 24–25
pulse-width modulation. See PWM
push buttons, Mojo IO Shield, 165, 166
push switches, Elbert 2, 155–156
PWM

duty cycles, 95
inputs and outputs, 96–97
modules, 96–99
overview, 95–96

R
radix, 50

specifying, 76–77
RAM, 117
raw format, 116
refresh frequency, 125
registers, 50

sizing counter registers, 65–66
routing matrix, 14

S
sequential logic, 8
serial-to-parallel shift register, 11

servo module, 104–107
servomotors, 100–101

hardware, 101–104
set-reset flip-flop, 9–10
seven-segment decoder, 60–63
shift registers, 11
simulation, 141, 142
single-bit adders, 7–9
sizing counter registers, 65–66
slide switches

Mojo IO Shield, 164
See also DIP slide switches

software setup, 20–24
SR flip-flop, 9–10
state machines, 81–82

design, 83–84
drawing, 83
implementation, 89–91

state transition diagrams (STDs),  
81

See also state machines
synchronous logic, 58

T
technology schematic, viewing, 

141–143
testing

4-bit counter, 48
audio files, 120
data selector example, 41–44, 45
multiplexed seven-segment 

display and counter, 79
PWM module, 97–99
timer, 94
tone/frequency generator, 114, 

115, 116
ticks, 128
timer

alarm module instance, 88–89
hardware, 84–86
inputs and outputs, 88
modeling time and display, 89
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modules, 86, 88–93
overview, 81
push buttons, 88
state machines, 81–84, 89–91
tasks, 91–93
testing, 94
user constraints file, 87

tone generation, 109–110
tone module, 112–113
tone_tester module, 113–114
tone/frequency generator, 111–114
top-level module, 70, 78–79
truth tables

for an AND gate, 3, 28
for a NAND gate, 4
for a NOR gate, 4
for a NOT gate, 2
for an OR gate, 3
for a single-bit adder, 8
for an XOR gate, 6

U
UCFs. See implementation 

constraints files; user 
constraints files

universal gates, 4
See also NAND gates; NOR gates

user constraints file
Mojo IO Shield, 165
for multiplexed seven-segment 

display and counter, 77
for PWM module, 97–98
for timer, 87

user constraints files, 36–39

V
Verilog

4-bit counter, 55–57
data selector, 51–55
modules, 49, 59
number format, 50
overview, 49

parallel execution, 50
wires, registers, and buses, 50

vertical blanking period, 128
VGA, 125–128

and the Elbert 2, 133–134
Elbert 2, 156
LogicStart MegaWing, 170
timings, 128–129

VGA module, 130–133
VHSIC Hardware Description 

Language (VHDL), 27
video

additive color mixing, 127
drawing rectangles, 129–134
frames, 125
horizontal back porch, 128
horizontal blanking period, 128
horizontal front porch, 128
HSYNC signal, 127
making things move, 134–136
memory-mapped display, 136–139
preparing images, 138–139
refresh frequency, 125
ticks, 128
vertical blanking period, 128
VGA, 125–128
VGA and the Elbert 2, 133–134
VGA module, 130–133
VGA timings, 128–129
VSYNC signal, 127

VSYNC signal, 127

W
wav_player module, 118–120
web recources, 151
wires, 50

x
XOR gates, 5–6

Z
ZPUino, 144
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